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Abstract Let G be a simple graph with n vertices. For any v € V(G), let N(v) =
{u € V(G) : uv € E(G)}, NC(G) = min{|[N(u) U N(w)| : u,v € V(G) and
uv ¢ E(G)}, and NC2(G) = min{|N(u) U N(v)| : u,v € V(G) and u and v has
distance 2in E(G)}. Let! > 1 be an integer. A graph G onn > [ vertices is [/, n]-pan-
connected if for any u, v € V(G), and any integer m with! <m < n, G hasa (u, v)-
path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263-274, 1998)
proved that for a three-connected graph on n > 7 vertices, if NC(G) > n—§(G) + 1,
then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-
pan-connected. In this paper, we prove that for a three-connected graph on n > 7
vertices, if NC2(G) > n — 8(G) + 1, then G is [5, n]-pan-connected. Consequently,
the conjecture of Wei and Zhu is proved as NC(G) > NC(G). Furthermore, we
show that the lower bound is best possible and characterize all 2-connected graphs
with NC2(G) > n — §(G) + 1 which are not [4, n]-pan-connected.

Keywords Pan-connected graphs - Neighborhood unions

Mathematics Subject Classification (2000) 05C38

1 Introduction

We consider finite, undirected simple graphs in this note. Undefined notations and
terminology will follow those in [1]. Let G be a graph. As in [1], ¥ (G) and §(G)
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K. Zhao

denote the connectivity and the minimum degree of G, respectively. If H is a subgraph
of G and v € V(G), then the neighborhood of v in H, is defined as Ny(v) =
{fu € V(H) : uv € E(G)}. We further denote Ng[v] = Ng(v) U {v}. A path
X0X1 -+ - X 18 also referred to as an (xg, x,,)-path of length m. For u, v € V(G), the
distance between u and v in G, denoted dg (u, v), is the length of a shortest (u, v)-
path. The set Ng(v) is sometimes denoted as N (v) and dg(u, v) as d(u, v), when
G is understood in the context. Let P = (u, v) denote a path in the direction from
utovin G and x € V(P). We denote by x™ its successor if x # v and x~ its
predecessor if x #= u. Let w € V(G) and N;,L(w) = {wt :we V(P - v}
and Np(w) = {w™ : w € V(P) — {u}}. Suppose that T = xjxj41---xj4x is a
path. If xq, ..., Xj—1, Xjtk+1s -+ s Xjpk+st € V(G) = V(T), and if xp - - “xj—1x; and
Xjyk - Xjyk+e are paths of G, then xy---x; 1x;TXxjfy1---Xjiys TEpresent the
path xy -+ - xj 444, in G.

For an integer [ > 1, if for any u, v € V(G) and any integer m withl < m < n,
G has a (u, v)-path of length m, then G is [l, n]-pan-connected. Define NC(G) =
min{|N(u) UN@)| : u,v € V(G) and uv ¢ E(G)}. The sizes of the neighborhood
unions have been used to study hamiltonian graphs and pan-connected graphs. The
following theorems have been obtained.

Theorem 1.1 (Faudree et al. [2]) Let G be a graph with |V (G)| = n and k(G) > 2.
If NC(G) = n — 8(G), then G is hamiltonian.

Theorem 1.2 (Wei and Zhu [3]) Let G be a graph with |V (G)| =n > 7T and k (G) >
3.IfNC(G) = n—68(G) + 1, then G is [6, n]-pan-connected.

In [3], Wei and Zhu conjectured that for a graph G with |V(G)| = n > 7 and
k(G) = 3,if NC(G) > n —46(G) + 1, then G is [5, n]-connected. It is proved in this
paper.

Theorem 1.3 Let G be a graph with |V(G)| =n > Tand k(G) = 3. If NC(G) >
n —8(G) + 1, then G is [5, n]-pan-connected.

In fact, we prove a stronger theorem for two-connected graphs in which we charac-
terize the class of all graphs which are not [4, n]-pan-connected. Define NC>(G) =
min{|N(u) UN )| : u,v € V(G) and dg (u, v) = 2}. Clearly, NC2(G) > NC(G).

Theorem 1.4 Let G be a 2-connected graph with |V(G)| = n > 7. If NC2(G) >
n —8(G) + 1, then G is [4, n]-pan-connected if and only if G € {G1, G2, G3} (as in
Figs. 1, 2,3).

In Fig. 1, K; (t > 3) is a complete graph, [Nk, (yo)| > 1, [Nk, (x1)| > 1;if
yox1 ¢ E(G), then for any w € V(K;), exactly one of {wyg, wx;} is in E(G);
if yox; € E(G), wx; and wyg are not both in E(G). In Fig. 2, K; is a complete
graph, Nk, (u;) = {t;},i = 1,2, Nk, (x1) N {t1, o} = ¥ and x| is adjacent to at least
two vertices in V(K;) — {t1, t»}. In Fig. 3, K;, K;, are complete graphs, d(xp) >
3,d(xp) > 3 and N(xg) € V(K;) U V(Ky), N(xg) € V(K;) U V(K,). In Fig. 4,
let L1 = K4 be a graph with V(L) = {xo, x1, x2, yé}, and let L, = K3C be a graph
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Fig.1 G, Yo
@
To~T1_—"T2
Fig.2 G, T
1
K,
X L2
U Us taty

Fig.3 G3, 1 <t<m

Fig. 4 G,

with V(L>) = {z0, y1, y2}, and let L3 = K, _7 withn — 7 > 2. Assume that all the
L;’s are vertex disjoint. Let G4 be obtained from L1 U (L, Vv L3) by adding four edges
yé 20, X1Y1, zoy1 and x2y2. Thus each G; (i = 1, 2, 3) denotes a family of graphs. We
also use G; to denote a particular member in this family.

Clearly, if G is complete, Theorem 1.4 holds. Throughout the following sections of
this paper we assume that G is not a complete graph. We shall prove our main theorem
by induction. In Sect. 3, we deal with the induction basis and in Sect. 4, we complete
the induction step.

2 Lemmas
Let P, = xox1 - - - X, be an (x, y)-path of length m in G, where x = xg and y = Xy,

are called the ends, x1, x2, ..., x,—1 are called the inner vertices. Throughout the
following sections we assume that G is a 2-connected graph with |[V(G)| =n > 7
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K. Zhao

such that
NC(G) = |V(G)|—-86(G)+1=n—-56+1. )
If (G) = 2, then NC2(G) > n — 1. Since G is not complete, Ju, v € V(G) such
that d(u, v) = 2. Clearly u, v ¢ N(u) U N(v) and it follows that [N (#) U N (v)| <
|V(G) — {u, v}| <n — 2, acontradiction. So

8(G) > 3. (2)

Lemma 2.1 If 6(G) = 3 and a,b € V(G) with d(a,b) = 2, then for any x €
V(G) —{a, b}, x € N(a) U N (b).

Proof If3x € V(G)—{a, b}suchthatx ¢ N(a)UN (b),then NCy < |N(a)UN ()|
[V(G)| — {x}| — {a, b}| <n —3 =n — 4§, contrary to (1). O

IA

Lemma 2.2 Let x,y € V(G) and P,, = xox1 - - Xm be an (x, y)-path of length m
with x = xg and y = x,,. Then each of following holds.

(1) If Py is a shortest (x, y)-path, then m < 4;
(i1) If Py, is a shortest (x, y)-path withdg (x, y) > 2, then G also has an (x, y)-path
of lengthm + 1.
(i) Ifdg(x,y) = 1 and Py, is a shortest (x, y)-pathin G — xy, then m < 4,
(iv) Ifdg(x,y) = 1 and Py, is a shortest (x, y)-path in G — xy with m > 3, then
G — xy also has an (x, y)-path of length m + 1 and so does G.

Proof (i) By way of contradiction we assume that m > 5. Since P, is a shortest
(x,y)-pathin G withm > 5, d(xg, x2) = 2 and Np, (x,;) = {Xm—1}, Xm—1X0,
Xm—1x2 ¢ E(G).If Ng_v(p,)(xn) N (NG (x0) UNg(x2)) = 0, then | Ng (x0) U
Ng(x2)| = |[V(G)| — ING-v ) (Xm) U {xm-1}] = |[V(G)| — |Ng(xm)| =
n—38(G), acontradiction. SoJu € Ng_y (p,,)(xm) suchthatu € N(xg)UN (x3).
Then either xoux,, is an (x, y)-path of length 2 or xox1x2ux,, is an (x, y)-path
of length 4 in G, which contradicts that P, is a shortest (x, y)-path withm > 5.

(i1) Sinced(x, y)>2and P, isashortest (x, y)-path,d(xp, x2) = 2and Np, (x1) =
{x0, x2}. Then u € N(x1) — {x0, x2} such that u € N (xg) U N(x2) otherwise
IN(xg) UN(X2)| < |V(G)] —|N(x1)| < n — §(G), a contradiction. Then
XQUX1X2 -+ X OF X0X1UX2X3 - - - Xy 1S an (x, y)-path of length m + 1.

(iii) By way of contradiction we assume that m > 5. Since P, is a shortest (x, y)-
path in G — xy with m > 5, d(xp, x2) = 2 and Np, (x) = {Xp—1, X0},
Xm—1X0, Xu—1X2 ¢ E(G).Then3u € Ng_p, (x,,) suchthatu € N(xp)UN (x2)
otherwise |N(xo) U N (x2)| < [V(G)| — ING-p,, (xm) U {x0, Xp—1}| = n —
IN (x,)] < n —8(G), a contradiction. So xoux,, is an (x, y)-path of length 2
Or X0X1X2UXp, 1S an (x, y)-path of length 4 in G — xy, contrary to the fact that
X0X1 - - - Xy 1S a shortest (x, y)-pathin G — xy withm > 5.

(iv) Since m > 3 and P, is a shortest (x, y)-path in G — xy, dg(xp, x2) = 2
and Ng(x1) N V(Py,) = {xp,x2}. Then Ju € N(x1) — {x0, x2} such that
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u € N(xg)UN (xp) otherwise |N (xg)UN (x2)| < |V(G)|—|IN(x1)| < n—68(G),
a contradiction. Then xouxixy - - - X, OF XoX1UX2X3 - - - Xy, 1S an (x, y)-path of
lengthm 4+ 1in G — xy. O

Lemma 2.3 Let x,y € V(G), Py, = xox1 -+ Xy be an (x, y)-path of length m and
and for some i with 0 < i <m, 3u € Ng_p, (x;),v € NGg—p,, (xi+1) withu # v for
Xi, Xix1 € V(Py). If G does not have an (x, y)-path of lengthm +2, then uv ¢ E(G).

Proof If uv € E(G), then xoxq - - - Xjuvx;41 - - - Xy is an (x, y)-path of length m + 2,
a contradiction. O

3 Base case

Theorem 3.1 For any pair of distinct vertices x,y € V(G), one of the following
holds.

(1) G €{G1} (see Fig. 1) and G has (x, y)-paths of length of 5 and 6;
(i) G ¢ {G1}and 3k € {2, 3, 4} such that G has (x, y)-paths of length k and k + 1.

Proof By Lemma 2.2(i), 3 a shortest (x, y)-path of length < 4. If dg(x,y) = 2,3
or 4, by Lemma 2.2(ii), G has an (x, y)-path of length 3, 4, 5 respectively, done.
Next we assume that dg(x, y) = 1. Let P, be a shortest (x, y)-path in G — xy. By
Lemma 2.2(iii) and (iv) if dG—xy(x, y) = 3 or 4, then G has an (x, y)-path of length
4, 5 respectively, done. So we assume that dg—y(x, y) = 2. Let xox1x2 = P, be a
shortest (x, y)-path of length 2 in G — xy. Since dg (x, y) = 1, xox2 € E(G). By way
of contradiction, we assume that

G does not have an (x, y)-path of length 3. 3)

Since §(G) > 3, Ng—p,(x0) # ¥ and Ng_p,(x2) # 0.

Case I Ju € Ng—_p,(xp) but u ¢ Ng—p,(x2). Since xox2 € E(G), dg(u, x2) = 2.
By (3) xju ¢ E(G). Then Jv € N(x1) — {x0, x2} such thatu # v € N(u) U N(x2)
otherwise |N (u)UN (x3)| < |V(G)|—|N (x1)—{xo}U{u}| < n—68(G), acontradiction.
By (3) vx2 ¢ E(G).Sovu € E(G) and xouvxixy is an (x, y)-path of length 4. Since
ux) ¢ E(G),uxy ¢ E(G) and §(G) = 3, Ng_p,—(u) # . Since d(v, x2) = 2 and
uxy ¢ E(G),then3Ju; € Ng(u) — {xo, v, xo} such that u; € N(v) U N(x7) otherwise
IN(v) UN(x2)| < |V(G)| — |N@) — {xo} U {x2}| < n — 6(G), a contradiction. If
u1x2 € E(G), xouuixy is an (x, y)-path of length 3, contrary to (3). If ujv € E(G),
Xouuvxixs is an (x, y)-path of length 5 and so G has an (x, y)-path of length 4 and
5, done.

Case 2 Ng_p,(x0) € N(x2). By symmetry, Ng_p,(x0) = NGg—p,(x2).

If Ng—p,(x0) has two vertices (say z1, z2) adjacent to each other, then by Ng_p,
(x0) = Ng—p,(x2), x0z122x7 is an (xp, x2)-path of length 3, contrary to (3). Thus
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NG-—p,(x0) = Ng—p,(x2) is an independent set. @)

For any v € Ng_p,(x1), if v € Ng(xp) U Ng(x2), then xgvxjx2 or xoxjvxz is an
(x0, x2)-path of length 3, contrary to (3). So

NG—p,(x1) N (NG-p,(x0) U NG—p,(x2)) = 0. (5

Subcase 2.1 5(G) > 4. Then |[Ng_p,(x0)| > 2. By Ng_p,(x0) = NG—p,(x2), let
uy, uz € Ng—p,(x0) = Ng—p,(x2). By (5), u1, u2 ¢ Ng—p,(x1). By (4),d(u1, u2) =
2.If Ng—p,(x1) N (NGg—p,(u1) U Ng—p,(u2)) = @, then [Ng(u1) U Ng(u2)| <
[V(G)|—=IN[x1]—{x0, x2}U{u1}| < n—4,acontradiction. So Jv; € Ng—p, (x1) such
that viu; € E(G) or viuz € E(G). Without loss of generality we assume that viu; €
E(G). Then xoujvix1xs is an (x, y)-path of length 4. By (3) vixg ¢ E(G), vixa ¢
E(G). As 8(G) = 4, Ng(vy) — V(P2) — {uy,uz} # @. Since d(uy,uz) = 2,
v} € Ng(v1) — {x1, ur, uz} such that either viu; € E(G) or vjup € E(G) other-
wise |Ng(u1) U Ng(u2)| < |V(G)| — |[N(v1)| < n — §(G), a contradiction. Then
XoU|V]VIX1X2 OF Xou2V|v1X1X2 is an (x, y)-path of length 5, respectively. Hence G
has an (x, y)-path of length 4 and 5, done.

Subcase 2.2 5(G) = 3. If [Ng_p,(x0)| > 2, let uj,us € Ng—p,(x0). By (4),
d(ui,uz) = 2. By Lemma 2.1, x;1 € N(u1) U N(up), then xoujxixz or xouzxixa
is an (x, y)-path of length 3, contrary to (3). So |[Ng—p,(x0)| = |Ng—p,(x2)| = 1.
We assume that

NG-p,(x0) = NGg—p,(x2) = {yo0}. (6)

Next we show that V(G) — V(P>) — {yo} induces a complete graph. Let Gy, ..., G;
be components of G — V(P2) — {yo}. If uy, ur € V(G;) such that d(uy, uz) = 2,
then by Lemma 2.1 xo € N(u1) U N(up), contrary to (6). So each component G;
is complete. If + > 2, since k(G) > 2, by (6) each component has at least two
vertices adjacent to x1 and to yg respectively. Then Jw; € V(G;), w2 € V(G;j)
such that wiyg € E(G),wayy € E(G) and so d(wi, wy) = 2. By Lemma 2.1
x0 € N(wi)UN (w»), contrary to (6). Hence V (G) — V (P2) —{yo} induces a complete
graph, denoted by G[V (K;)].

Sincen > 7,|V(G)—V(P2)—{yo}| = |V(K;)| = 3.Sincek (G) > 2,by Menger’s
Theorem, Jwy, uy € V(G) — V(P2) — {yo} such that wix; € E(G), wayo € E(G).
Then xgyowawix1x3 i8 an (x, y)-path of length 5. If Ju" € V(K;) with u’yp, u'x) €
E(G), then xgyou'x1x7 is an (x, y)-path of length 4. Hence G has an (x, y)-path of
length 4 and 5, done. So for any u’ € V(K;), u’ cannot be adjacent to both yy and
x1. By (3), yox1 ¢ E(G) and d(yo, x1) = 2. By Lemma 2.1, for any z € V(K;), z €
N(yo) U N(x1). Therefore this is the class G3 of graphs depicted as in Fig. 1. Let
u3 € V(K;) — {w1, wa}. Then xgyowowix1x2 and xgyowauzwixixy are (x, y)-path
of length 5 and 6, respectively. O
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4 Proof of Theorems 1.3 and 1.4 (Induction)

Lemma 4.1 Let P, be an (x, y)-path of length m and u € V(G) — V(P,) with
|N;Lm (m)| = 2. If G does not have an (x, y)-path of length m + 2, then one of the
following must hold.

(i) Fapairxiy1,xj41 € N;,rm (u) such that x; y1xj41 € E(G);
(ii) foreverypairof xiy1, Xp+1 € N;,rm (u) (wWherek < h)with{xky+1, Xk+2, -+ -+ Xp—1}
N Np, () =0, Ar, s, t such that one of the following holds

XpXkt1, Xn+1X%r4+1 € E(G) @ 1 <r <k
Xsp1Xki1, Xpt1Xs € E(G) @ k+1<s<h

XtXkt1, Xhr1Xr41 €E E(G) @ h+1<t<m

Proof We assume that (i) fails to prove (ii). By contradiction, assume further that no
suchr, s or t can be found. Since (i) does nothold, x;+1 # x;,. And as {xx4+1, Xk+2, - - -
Xp—1}NNp, () = B,d(u, xk+1) = 2.ByLemma?2.3, Ng—p, (xp+1)NNg—p, (1) = 0.
If 3w € Ng-_p, (xp41) such that wxir; € E(G), then xq - - - XguXpXp—1 - - - Xk41
WXp41 -+ - X, 1S an (x, y)-path of length m + 2, contrary to the assumption. So
NG-p, (xp+1) N NG-p, (xk+1) = @. Let Ty = xox1- - Xp, T2 = X1 Xk42 -+ * X
and T3 = Xp41Xp42 -« * Xpm. Since {Xg41, Xk42, ..., Xh—1} N Np,, (u) = ¥ and (1), (ii)
do not hold, for any z € Ng (xx+1) U Ng(u),

ZE Ny ey G ) UNZ o Gone) U N (1)

and NT_uf{xo}(xh“)’ N;’;i{xh}(.}(h+]) and NT_3 (xp41) are pairwise disjoint. Then |Ng
W4 UNG )] < [V (G)] = (ING—p, G)| + N7 o, s UNZ (g 1) U

Ny, (eng 1) U {u, X1} — {xo, xp}) = [V(G)] = ING-p, (xn41) U Np, (xp41)| =
n — §(G), contrary to (1). O

Corollary 4.2 Let P, be an (x, y)-path of length m and u € V(G) — V(Py,) with
|N;:” (u)| = 2. If G does not have an (x, y)-path of length m + 2, then G has an
(x, y)-path Py of lengthm + 1 with V(Pp+1) = V(Py) U {u}.

Proof If Lemma 4.1(i) holds, then Ixjy1, xp41 € N;{m (u) with xgr1xp+1 € E(G)
(k < h < m). Hence xoX1 - XpUXpXp—1 * * * Xk 1 X041« + + X 18 @n (xg, X, )-path of
length m + 1. Next we assume that Lemma 4.1(ii) holds. If x, xg 41, xp+1X%-41 € E(G),
then xox1 - - - Xp Xpp 1 Xk 42+ * XpUXRXf—1 -+ * Xp41 Xp1XR42 - - X 18 @n (X0, X, )-path
of length m + 1. If Xs+1Xk+1, Xh+1Xs € E(G), then xoxy - - - XpUXpXp—1 * + * Xg+1Xk+1
Xk4+2 *+ " XsXp+1Xp42 « - - Xy 1S@N0 (X0, X, )-path of length m + 1. If Xy xp 41, Xpp1X41 €
E(G),thenxoxy - - - XpU XpXp—1 * - X 1 X Xg—1 =+ X 1 X1 X042+ - X 1S AN (X0, Xp)-
path of length m + 1. O

Lemma 4.3 Let Py, = xox1x2 - - - Xp, be an (x, y)-path of length m in G. If Jw, w’ €
V(G) — V(Py) satisfying both of the following,
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(i) both |Np, (w)| > 2 and |Np, (w")| > 2, and
(ii) both Np,(w) — {x0, xn} # @ and Np,(w') — {x0, X} # @, then G has an
(x, y)-path of length m + 2.

Proof By way of contradiction, we assume that G does not have an (x, y)-path of
length m + 2. If |N;§m(w)| = |N}fm(w’)| = 1, then x,, € Np, (w), x,, € Np, ().
Reverse the order of Py, to get P,,, then by (i) and (ii) |N1J§, (w)| > 2, |NIJ§, (w"| > 2.
So we may assume that {x;, x;} € Np, (w) with0 < i <mj < m. By C(;nrollary 4.2,
G has an (xq, x,,)-path Py, 41 with V(Pyy1) = V(P,) U {w).

Note that Np,(w') € V(Py) S V(Py41). Thus [Np, . (w)| > 2. If x,, &
Np,., (W) orif [Np,  (w')| > 3, then |NIJ’:,1+1(w/)| > 2, and we can apply Corol-
lary 4.2 to P41 and w’ to find an (xq, X;;+2)-path Py,1p with V (Pyi0) = V(Pyy1)U
{w'}. Therefore, we may assume that Np, ,(w') = Np,(w') = {x;, x,}, with
0 < I < m. Reverse the order of P, to get an (x,+1, Xp)-path Q,,+1. Then
|N§m+l(w’)| > 2, and so we can apply Corollary 4.2 to Q,;41 and w’ to find an
(Xm+2, x0)-path Q12 with V(Qpa2) = V(Qum+1) U {w'}. Therefore, in any case,
we can find an (xg, x,,)-path of length m + 2, a contradiction. O

Theorem 4.4 Let x,y € V(G). If G has an (x, y)-path P, = xox1x2 of length 2,
then either G € {G1, G2, G4} (see Figs. 1,2,4) or G has an (x, y)-path of length 4.

Proof By way of contradiction we assume that

G does not have an (x, y)-path of length 4. @)
Case 1 §(G) = 3. Then N(xo) — {x1, x2} # @ and N (x2) — {x0, x1} # 0.

Subcase 1.1 |Ng—_p,(x0) U Ng—p,(x2)| = 2. Then Jyo, y» € V(G) — V(P>) with
Yo # y2 such that xoyo, x2y2 € E(G). First we assume that yoy> € E(G).

By Lemma 2.3 for each i € {0, 2}, yix; ¢ E(G) and so d(y;, x;) = 2. Then by
Lemma 2.1, NG (1) UNG (x1) = V(G) — {31, x1}. 1t Ju € V(G) — (V(P2)U{yo, y2})
such that uyp € E(G), then by Lemma 2.3, ux; ¢ E(G). Since d(y2, x1) = 2, by
Lemma 2.1 uy, € E(G), then xgypuysx2 is an (x, y)-path of length 4, contrary to (7).
So by symmetry

forany u € V(G) — (V(P2) U {yo, y2}), uyo, uy> ¢ E(G). ®)

Since d(yp, x1) = 2, by Lemma 2.1, forany u € V(G) — (V(P2) U {y0, »2}), ux1 €
E(G). Therefore V(G) — (V(P2) U {yo, y2}) € Ng(x1).

Sincen > 7,|V(G) — (V(P2)U{yo, y2})| > 2. If there exist two vertices w1, wy €
V(G)—(V(P2)U{yo, y2}) such thatd (wy, wz) = 2, then by Lemma 2.1, we must have
yo € Ng(w1) U Ng(wa), contrary to (8). It follows that V(G) — (V(P2) U {yo, y2})
induces a complete subgraph K; = K,_s, where n —5 > 7 —5 = 2. Since G
is 2-connected, x| is not a cut vertex of G, and also Ng_p, (x1) N (Ng-p, (y0) U
Ng-p, (y2)) = @ by (8), we can find u; € V(G) — (V(P2) U {yo, y2}) such that
u1xg € E(G) (orrespectively, u1xy € E(G)). Since |V(G)— (V(P2)U{yo, 21| = 2,
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Pan-connectedness of graphs with large neighborhood unions

Jur € V(G)—(V(P2)U{yo, y2, u1}). Hence xouuyx1 x> (orrespectively, xoxiuau1x2)
is an (xg, x2)-path of length 4, contrary to (7).

Next we assume ypy> ¢ E(G). By (7), at most one edge in {yox1, y2x1} is in
E(G) and we assume that y,x1 ¢ E(G). So d(y2,x1) = 2 and by Lemma 2.1
and yoy2 & E(G), yox1 € E(G). If 3u" € Ng(yo) — (V(P2) U {y0, y2}), then by
Lemma 2.1, u” € Ng(x1) U Ng(y2). Each case is contrary to Lemma 7. Thus

NG (yo) € V(P). 9)

Since §(G) = 3, yox2 € E(G). Then d(yo, y2) = 2. As yoy2 € E(G), dg(yo, y2) =
2. By (9) and Lemma 2.1, V(G) — (V(P2) U {y0, y2}) € Ng(y2). Since n > 7,
IV(G) — (V(P2) U {yo, DI = 2. Let uj,uz € V(G) — (V(P2) U {yo, y2)), if
uuy € E(G), then by Lemma 2.1, x; € Ng(u1) U Ng(u2), contrary to Lemma 2.3.
Hence V(G) — (V(P2) U {yo, y2}) induces a complete subgraph K; = K,_5 in G.
Since k(G) > 2 and Ng(y0) S V(P2), we may assume that u; € Ng(xg) and
uy € Ng(y2). It follows that xouusy2x2 is an (xg, x2)-path of length 4, contrary to
(7). Therefore, Case 1.1 is precluded.

Subcase 1.2 |Ng_p,(x0) U Ng—p,(x2)| = 1. Let yo € Ng—p,(x0) U NG—p,(x2).

Since §(G) = 3 and Ng—p, (x0) U NGg—p,(x2) = {yo}, we must have xox; € E(G)
and for any y € V(G) — V(P2) — yo, yXo, yx2 ¢ E(G). Then

Ng(x0) — {x2} = Ng(x2) — {x0} = {x1, yo}. (10)

Since « (G) > 2,if G — V(P2) — {yo} is not connected, then by (10) each component
is adjacent to both yg and x;. So Ju, v from two different components such that
uyo, vyo € E(G) and thus d(u, v) = 2. So |[Ng(u) U Ng(v)| < n — |{x0, x2, u}| =
n—3 =n—§(G), acontradiction. Similarly we can prove that V(G) — V(P2) — {yo}
induces a complete subgraph K; of G.If Ju’ € V(K;) with u’yg, u’x; € E(G), then
xoyou'x1xy is an (x, y)-path of length 4, contrary to (7). So for any u’ € V(K;),
if u'yg € E(G), then u'x; ¢ E(G) and if u'x; € E(G), then u'yy ¢ E(G). If
yox1 ¢ E(G),thend(yg, x1) = 2. ByLemma 2.1, forany w € V(G) — V (P2) —{yo},
exactly one of wyg € E(G) and wx; € E(G) holds. If yox; € E(G), then for any
w € V(G) — V(P2) — {yo}, w is not adjacent to both yp and x;. This class G| of
graphs is depicted in Fig. 1.

Case 2 §(G) > 4.

Subcase 2.1 |NG—p,(x0) N NG—p,(x1)] = 1 or [Ng—p,(x2) N Ng—p,(x1)| > 1.
We may assume that yé € Ng-_p,(x0) N Ng—p,(x1). Since §(G) > 4, Jy; €
Ng_p,—y (x1). By Lemma 2.3 Yoy1 ¢ E(G). By 8(G) > 4,3z0 € Ng—p,— (1} (00).
By (7), zox1, zox2 ¢ E(G) and NG—Pz—yé (x2)N (NG—Pz—yé (zo)U NG—Pz—yé (x1)) =
. We have the following observations.

(A) yolxz € E(G) and xgx» € E(G). Otherwise if yéxz ¢ E(G), then |N(z¢) U
N(x1)| < |V(G)| — IN(x2) — {x0} Uzo| = n — 6(G), a contradiction; if xox, ¢
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E(G), then [N (z0) UN(x))| < [V(G)| — IN(x2) — {yj} Uzol =n —8(G), a
contradiction.

(B) Lety, € NG—Pz—{yé,yl}(xZ)' Then xpy; € E(G) and N (xo) = {x1, x2, yé, y2}.
So8(G) =4.

If3yg € N(xo)— V(Pz)—{y(l), y1, Y2}, then yoy(l) ¢ E(G) otherwisexoyoy(l)xlxg is
an (x, y)-path of length 4, contrary to (7). So IN(y(%) UNo)| < |IV(G)|—|N(y2) —
{x0, x2} U {yd, y1}] = n — 8(G), contrary to (1). Since §(G) > 4, y}y» € E(G) and
50 N (xo) = {x1, x2, 3, y2}.

(C) d(x1)=d(x2)=4, and so N (x1) ={xo, x2, ¥, y1} and N (x2) = {x0, x1, ¥}, 2.

By Lemma 2.3, NG_pz(xl)ﬂ(N(yé) UN(»)) =0.If IN(x1)| > 5, then |N(yé)U
N(y2)| < [V(G)| = IN(x1) — {x0, x2} U | < n—4 =n—38(G), contrary to (1).
Similarly, if [N (x2)| = 5. [N(y)) U N(| < [V(G)] = IN(x2) = {x0. x1} U yi| <
n—4 =n— §(G), a contradiction.

D) N = {x0, x1, x2, 20}

If [N(y)| > 5, then [N(x1) UN(»)| < [V(G)| — IN) — {x0,x2} U ya| <
n —4 =n — §(G), a contradiction.

(E) zoy1 € E(G) and 20y ¢ E(G). S0 Ngip,(y1 y1.y11(20) = (Vg y1}.

By (D), if zoy1 ¢ E(G), then [N (xo) U N(y1)| < [V(G)| — IN(y)) — {x1,x2} U
{z0, ¥y1}| = n — 4, a contradiction. If zgy, € E(G), then xoyéz()yz is an (x, y)-path of
length 4, contrary to (7). By (B) and (C), NG[qu{y(l)’yl’yz}](Zo) = {yé, yi}.

(F) Forany v e V(G) — V(P2) — {y. y15 2, 20}, vz, vy1, vy2 € E(G).

Ifdv e V(G)—V(Pg)—{y(]), Y1, ¥2, 20} such that vy, ¢ E(G), |N(x1)UN(y2)| <
[V(G)|—{z0, X1, y2, v}| = n—4, acontradiction; if vy; ¢ E(G), |N(y(1))UN(y1)| <
[V(G)|— |{y(§, Y1, Y2, v}| = n—4, acontradiction; if vzg ¢ E(G), |N(z0) UN(x1)| <
[V(G)| — {zo, x1, ¥2, v}| = n — 4, a contradiction.

(G) Forany vi, v2 € V(G) — V(P2) — {0, y1, ¥2, 20}, viv2 € E(G).

If Jvy, v2 € V(G) — V(P2) — {yo, y1, 2, z0} such that vivo ¢ E(G), then by
(F), d(vi, v2) = 2. By (B), (C) and (D), (y} U V(P2)) N (N (v1) U N(v2)) = @, then
IN(v)) UN(@)| < |V(G)| — |y6 UV(Py)|=n—4=n-—45(G), contrary to (1).

By combining (A)—(G), we conclude that G € {G4}.

Subcase 2.2 |Ng—p,(x0) N Ng—p,(x1)| = 0 and |[Ng—p,(x2) N Ng—p,(x1)| = 0.
Then by symmetry for any y1 € Ng—_p,(x1), y1x0 ¢ E(G) and y1x2 ¢ E(G).

First we show that Ng_p,(xp) is complete. If Elyé, yg € NgG-p,(xp) such that
yoye ¢ E(G), then d(y}, y3) = 2. By Lemma 2.3 Ng_p,(x1) N (Ng—p,(y) U
NG-p, () = 9, then [NG(y5) U N6l < V(G| = [NG(x1) — {xo, x2} U
{yé, y§}| < n — 8(G), a contradiction. So Ng_p,(xp) is complete. Next we show

@ Springer

=
& | Journal: 605 MS: 0013 CMS: 605_2008_13_Article [ TYPESET [_] DISK [_]LE [_]CP Disp.:2008/7/24 Pages: 15 Layout: Small-X




G
]
]
S
(=W}
-
o
=
+—
=
<

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

3!

@

3

3!

@

4

3!

il

5

3!

a

6

3

@

7

358

359

360

361

362

Pan-connectedness of graphs with large neighborhood unions

NG—p,(x0) = NG—p,(x2). If 3y} € Ng_p,(x0) such that yjxo ¢ E(G), then
d(yg. x2) = 2.Since NG_p, (x1) N NG—p,(x2) = ¥, and by Lemma 2.3, NG_p, (x1) N
NG—p,(y)) = @, we have [N (yg) U NG (x2)| < [V(G)| — [N (x1) — {xo} U {yg}l <
n — 8(G), a contradiction. By symmetry,

NG_p,(x0) = Ng—p,(x2) is complete. (11)

If xox2 ¢ E(G), then d(xp, x2) = 2. By Subcase 2.2 assumption that Ng—p, (x1) N
(NG-p,(x0) U NG—p,(x2)) = 0, 50 [Ng(x0) U Ng(x2)| < [V(G)] = |Ng(x1)| =<
n — 8(G), a contradiction. So xpx; € E(G).

If ING—p,(x0)| = 3,letuy, uz, u3 € Ng—p,(x0). By (11), xoujuouszxz is an (x, y)-
path of length 4, contrary to (7). So we must have |[Ng_p,(x0)| = 2 since 6(G) > 4.
Then§(G) = 4andlet Ng_p, (xo) = {u1, uz}. We show that V(G) =V (P>) —{u1, uz}
induces a complete graph. If Jvy, v» € V(G)—V (P2) —{u1, ua} suchthatd(vy, v2) =
2, then xg, x2 ¢ Ng(v1) U Ng(vy), contrary to (1). Let K; denote the graph induced
by V(G) — V(P2) — {u1, uz}. By Lemma 2.3, N, (x1) N (Ng, (u1) U Nk, (u2)) = 0.
By (7) Nk, (u1) N Nk, (u2) = @. Since d(x1,u1) = d(x1,u2) = 2, §(G) > 4,
Nk, (u1)] = [Nk, (u2)| = 1. Thus the class of graphs is depicted in Fig. 2. Hence
G € {Gy}. O

Theorem 4.5 Let x,y € V(G). If G has an (x, y)-path P, = xox1 - X, of length
mwith3 <m < |V(G)| — 2, then G has an (x, y)-path of lengthm +2 or G € {G3}
(Fig. 3).

Proof By way of contradiction we assume that
G does not have an (x, y)-path of length m + 2. (12)
By Lemma 4.3, we may assume that
H{w € V(G) = V(Pn) : [Np,(w)| =2 and Np, (w) — {xo, xm} # ¥} < 1.(13)

Case I w € V(G)—V(Py) suchthatwx; € E(G) forsome x; € V(Py,) —{x0, X}
and for any v € V(G) — V(Py,) — w, Np, (v) C {x0, xmm}.

Claim1 (i) G[V(G)— V(P,)— w]is complete.
(i) G[V(Py) — {x0, xm}] is complete.

(iii) Ng(w) S V(Pp).

iv) G[V(Pn) — {x0, xm} U w] is complete.

Proof of Claim 1 (i) Let Gy, ..., G; be components of G[V(G) — V(Py,) — w].
First we show that each component G; is complete. By way of contradiction
that we assume that dy;, y» € V(G;) such that dg, (y1, y2) = 2. Since m > 3,
x1 € V(Py,) is an inner vertex. By Case 1 assumption, NG (x1) € V(Py,) U w.
Then [Ng(y1) U Ng(y2)| < [V(G)| — [Nglx1] — {x0, Xm, w} U {y1, »2}| <
n — 8(G), a contradiction. Hence G; is complete.
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By the assumption of Case 1, Np, uw (G;) < {x0, xm, w} foreachi € {1,2,...,t}.
Since «(G) > 2, |Np,(G;)| = 2. If t > 2, then 3 two vertices from distinct G;
and G respectively are adjacent to a same vertex in {xo, X,,, w}. Assume that 3y| €
Gi,y, € Gj such that dg(y],y5) = 2. Then |[Ng(y]) U Ng(¥))| < |V(G)| —
ING[x1] — {x0, Xm, w} U {y1, y2}| < n — §(G), a contradiction. Hence ¢+ = 1. Thus
G[V(G) — V(P,) — w] is complete.

(i) By way of contradiction we suppose that 3x;, x;y € V (Py,) — {xo, X, } such that
dg(x7, xx) = 2. Since |V(G) — V(Py)| = 2,lety € V(G) — V(P,) — w. By
the assumption of Case 1, Np, uw (¥) € {x0, Xn, w}. Since x;, x; are both inner
vertices, [N (x)) U NG (xp)| < [V(G)| — INGLy] — {x0, xm, w} U {x7, xi}| <
n — §(G), a contradiction. Thus G[V (P,;) — {x0, X }] is complete.

(iiii) By way of contradiction we assume that w is adjacent to some vertex wj in
G[V(G) — V(P,) — w]. First we assume that x; # x; and x; # x;,—1. If
wixg € E(G) or wix,, € E(G), then by Claim 1(ii), there is an (x;, x;;,—1)
path T or (x1, x;) path T’ of length m — 2 in G[V(Py) — {x0, xm}]. And
80 xoW1WX; T Xpy—1 X or xox1 T/ x;wwix,, is an (x, y)-path of length m + 2,
contrary to (12). Otherwise since x (G) > 2,3wy € V(G) — V(Py) —{w, wi}
such that either wyxg € E(G) or wax,, € E(G). Similarly, if woxg € E(G)
or wax,, € E(G), then by Claim 1(ii), there is an (x;, x;,—1) path T or (x1, x;)
path T’ of length m — 3 in G[V (Py,) — {x0, xm }]. And so xowowiwx; T X1 Xm
or xox1 T'xjwwiwaxy, is an (x, y)-path of length m + 2, contrary to (12).

Suppose that x; = x1. Then by Lemma 2.3, xow; ¢ E(G).If 3wy € V(G) —
V(Py)—{w, wi}suchthat wyxg € E(G), then by Claim 1(1), xowowj wx1X3 - - - Xp, 18
an (x, y)-pathoflength m+2, contrary to (12). SO NG —v (p,,)—{w} (WD) NG —v (P,)—{w}
(x0) = 0. If xox,,—1 ¢ E(G), then by Claim 1(ii), x1x,,—1 € E(G) and so d(x,
Xm—1) = 2. Together with the assumption of Case 1, |[Ng(xg) U Ng(xm—1)| <
[V(G)| — |Ng(w1) — {w} U {xp—1}| <n —§(G), contrary to (1). Hence xox,,—1 €
E(G). If wix,, € E(G), then xoXx;,—1X,—2 -+ X]Ww1 Xy, is an (x, y)-path of length
m +2, contrary to (12). Otherwise since k (G) > 2 and Ng_v (p,,)—{w} (x0) N(V(G) —
V(P,) —{w}) =0, dws € V(G) — V(Py) — {w, wi} such that w3x,, € E(G).
Then xox;—1Xm—3Xm—4 -+ - X]WW{W3X,, (M > 4) or xgxjwwiwsx, (m = 3)is an
(x, y)-path of length m 4 2, contrary to (12). By symmetry the case x; = x,,—1 can
be excluded similarly as the case x; = x;.

(iv) By Claim 1(ii) it suffices to show that wx; € E(G) fork € {1,2,...,m — 1}.
Assume that x; _; € V(Py) —{x0, xn} and wx;—1 ¢ E(G). Since wx; € E(G),
d(xj_1,w) =2.Lety € V(G)—V (Py,)—w.ByClaim 1(iii), Ng (w) C V(Py)
and Ng_p, (y) N Nglw] = @. By the assumption of Case 1 Np, (y) < {xo0, Xn}.
So [Ng(xi—1) U Ng(w)| < |[V(G)| = INGgIy] = {x0, xm} U {w, x;—1}| < n—
8(G), contrary to (1). Hence wx;_1 € E(G). Similarly wx;_x € E(G) where
ke{2,...,i —1}and wxj+r € E(G) where k € {1,2,...,m —i — 1}. So
GV (Py) — {x0, xm} U w] is complete. |

By Claim 1(iii), Ng(w) < V(Py). Since «(G) > 2 and §(G) > 3, |V(G) —
V(Py) —w)| > 2 and v, v € V(G) — V(P,) — w such that vxg € E(G) and
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Pan-connectedness of graphs with large neighborhood unions

vV'x;; € E(G). By Claim 1(i), if |V(G) — V(Py,) — w| > m + 1, then there is a
(v, v')-path P of length m. So xoPx,, is an (x, y)-path of length m + 2, contrary to
(12). Hence 2 < |V(G) — V(Py) — w| < m. By Claim 1(i), (iii) and (iv), this is the
class of graphs depicted in Fig. 3 and so G € {G3}.

Case 2 Forany w € V(G) — V(Pp), Np, (w) < {xo, x,n}. The following claim can
be proved by the argument similar to the Proof of Claim 1.

Claim2 (i) G[V(G)— V(Py)]is complete.
(i) G[V(Py) — {x0, x;u}] is complete.

Since «(G) > 2 and §(G) > 3, Jw, w’ € V(G) — V(P,,) such that wxy € E(G)
and w'x,, € E(G). By Claim 2(i), if |V(G) — V(Py)| > m + 1, then G — V(P,,) is
a (w, w')-path P of length m. So xg Px,, is an (x, y)-path of length m + 2, contrary
to (12). Hence |V (G) — V(P,,)| < m. By Claim 2(ii), this class of graphs is depicted
in Fig. 3.

Case 3 Jw, w’ € V(G) — V(Py,) such that wx; € E(G) and w'x; € E(G) where

x;, x; are inner vertices and w # w'. Since x;, x; are both inner vertices, by (13), one

of {w, w’} has only one neighbor in P,,. Without loss of generality we assume that
Np,(w) = {x;}with1 <i <m — 1. (14)

Claim 3 xi_1xjy+; € E(G) foreach k with0 <k <m — i and x;11x;_x € E(G) for
each k with0 < k < i.

Proof of Claim 3 Clearly x;_1x; € E(G) and x;j4+1x; € E(G). First we prove that
Xi—1xi+1 € E(G). If xj_1xi41 ¢ E(G), then d(x;_1, xj+1) = 2. By Lemma 2.3,
Ng-p,(w) N (Ng—p, (xi—1) U Ng—p,, (xi+1)) = @. Together with (14), we have

ING(xi—1) U NG (xi+1)| = [V(G)| — [Nglw] = {xi}| = n — 8(G), contrary to (1).

We prove x;_1xj4x € E(G) for 2 < k < m — i by induction. Assume that
Xi—1Xi+k—1 € E(G). If xi—1xiyx ¢ E(G), then d(x;—1, xi+x) = 2. If Ng_p, (w) N
NG-p, (xitx) # 9, let y1 € Ng_p,(w) N Ng—p, (xi+1). Then xo - - x;—1Xi4k—1
Xitk—2 " XjWY] Xj+kXitk+1 -+ - Xm 1S an (x, y)-path of length m + 2, contrary to (12).
SoNG—p,(wW)NNG_p, (xitx) = ¥.ByLemma 2.3, Ng_p, (W)NNG_p, (xi—1) = 0.
Together with (14), we have |N(xj=1) U N(xj1r)| < |V(G)| — |Nglw] — {xi}| <
n — §(G), contrary to (1).

By symmetry, x;1x;—x € E(G) for each k with0 < k <. O

Let Gy, ..., G; be components of G[V(G) — V(Py)] and w € V(Gy). Since
k(G) = 2 and Np, (w) = {x;}, V(G1) — {w} # ¥ and Np, ,(G1) # 9. Pick
v € V(G1) — {w} such that

(@ Np,—x; () #0;

(b) subject to (a), dg, (w, v) is shortest;

(c) subject to (a) and (b), choose xy € Np,_y, (v) such that |k — i| is as small as
possible.
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K. Zhao

By symmetry we may assume thatk < i. Thenk+1 <i+1 <m.Letwwiwy---v
be a shortest (w, v)-path in Gy. If dg, (w, v) = 1, then wv € E(G). By Claim 3,
Xi+1Xk+1 € E(G). Then xoxq -+ XpvWX;Xj—1 *+ = Xp1 Xi41Xi42 *+ Xy 1S a0 (X, ¥)-
path of length m + 2, contrary to (12). So dg, (w, v) > 2.

Ifdg, (w, v) > 3,thendg (w2, w) = 2. We show that Ng_p,, (xi+-1)N(NG—p,, (w)U
NG-p,(w2)) = . Lety € Ng_p, (xi+1). By Lemma 2.3, yw ¢ E(G). If yw, €
E(G) and d(w, v) > 4, then dg,(w, y) = 3, contrary to (b); if yw, € E(G) and
dg,(w, v) = 3, then it is contrary to (c) when k < i — I, and xpxj - - - XpVW2 Y X 41
Xit2 -+ Xm, When k = i — 1, is an (x, y)-path of length m + 2, contrary to (12).
By (14) and (b), we have Np, (w) U Np, (w2) = {x;}. So |[Ng(w) U Ng(w2)| <
[V(G)| — |Nglxi+1] — {xi}| < n — §(G), contrary to (1). Next we assume that
dg,(w,v) =2.

Subcase 3.1 k < i — 1.

By Claim 3 x2x;4+1 € E(G). Since dg, (w, v) = 2, then xoxy -+ - Xk Wi WX;X;—1
- Xk42 Xi41 - Xp 1S an (x, y)-path of length m + 2, contrary to (12).

Subcase 3.2 k=i — 1.
Fact1 Np,(v) € {x;_1, x;, Xi11}.

Suppose by way of contradiction that 3x; € V(P,,) — {xi—1, Xi, Xi+1} such that
vx; € E(G). By Claim 3 xj40xi+1 € E(G) and xj—1x;—» € E(G). Then xox1 - --
XIVWIWX;Xj—] Xj—2 *+* X|42Xi+1Xi+2 -+ Xy Whenl < i —20r xoxy -+ Xj—1 X]—2X]—3
- XjWWVXIX[4+] - - - X When ! > i + 2 is an (x, y)-path of length m + 2, contrary
to (12).

Fact2 x;p € V(Py).

Since m > 3, either x;_» € V(Py) or xj42 € V(Py). If x;i_» € V(P,), then
NG-p, (xi—2)NNG-p, (w) = @by (b)and NG—p,, (x;—2)NNG—p, (v) = by Lemma
2.3.Soby (14), Ng—p, (xi—2) N (NG=p, (w)UNG_p, (v)) = 0. Together with Fact 1,
we have [N(w)UN (v)| < [V(G)|—=|N[xi—2]—{xi—1, xi, xi+1}U{w, v}| < n—3(G),

contrary to (1).
Fact3 vx;41 ¢ E(G).

Ifvx;y1 € E(G), then Ng_p,, (xi12) N NG_p,, (w) = ¥ by (b) and Ng_p,, (x;12) N
NG_p, (v) = by Lemma 2.3. By (14), NG p,, (xi12) N (NG—p,,(wW)UNG_p, (v)) =
(). Together with Fact 1, we have [N (w) U N(v)| < |V(G)| — |N[xi+2] — {xi—1, xi,
Xi+1} U{w, v}| <n —6(G), contrary to (1).

Fact 4 There exists y; € Ng—p,, (xi+1) such that yjv € E(G).

By Lemma 2.3, for any y’ € Ng_p, (xi+1), Yw ¢ E(G). If forany y' € Ng_p,
(xix1), Y'v ¢ E(G), then together with Facts 1 and 3 we have |Ng(v) U Ng(w)| <
[V(G)| — INglxit1] — {xi—1, xi} U {w}| < n — §(G), contrary to (1). So Iy, €
NgG—p, (xi+1) such that yjv € E(G).
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Pan-connectedness of graphs with large neighborhood unions

Fact 5 vx; ¢ E(G).

If vx; € E(G), by Fact 4, xpx1 - - - Xj—1X; VY1 Xj41Xi+2 « - - Xy 1S an (x, y)-path of
length m + 2, contrary to (12).

Fact 6 x;x;12> € E(G).

If xix;y+2 ¢ E(G), then d(x;, x;12) = 2. Let yo € Ng_p, (v). By Lemma 2.3,
yx; ¢ E(G). By Claim 3 x;_1x;4+1 € E(G) and by Fact 4, if y,x;12 € E(G), then
X0X1 -+ Xj—1Xi+1Y1 VY2Xi+2 - - - Xpy 1S an (x, y)-path of length m + 2, contrary to (12).
Then Ng_p, (v) N (NGg—p, (xi) U Ng—p, (xi+2)) = @. Together with Facts 1, 3 and
5, we have [Ng (xi4+2) U NG (xi)| < [V(G)| — NG (v) — {xi—1} U {xi}| < n —3(G),
contrary to (1).

By Fact 6, xg -« - xj 1 vWWX;Xj42Xi+3 - - - Xp, 1S an (x, y)-path of length m + 2,
contrary to (12). So we excluded both subcases.

Subcase 3.1 and 3.2 can be excluded similarly when k > i. O
Proof of Theorem 1.4 By Theorem 3.1, 4.4 and 4.5, either G € {G, G2, G3, G4} or
G is [4, n]-pan-connected. O

Proof of Theorem 1.3 By the structure of G, and G4, for any x, y € V(G4), G2, G4
both have (x, y)-paths of length 5 and 6. By Theorem 4.5, G, and G4 are both [5, n]-
pan-connected. Since each graph in {G1, G3} has a 2-cut, if «(G) > 3, G is [5, n]-
pan-connected. O
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