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Abstract Let G be a simple graph with n vertices. For any v ∈ V (G), let N (v) =1

{u ∈ V (G) : uv ∈ E(G)}, NC(G) = min{|N (u) ∪ N (v)| : u, v ∈ V (G) and2

uv �∈ E(G)}, and NC2(G) = min{|N (u) ∪ N (v)| : u, v ∈ V (G) and u and v has3

distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on n ≥ l vertices is [l, n]-pan-4

connected if for any u, v ∈ V (G), and any integer m with l ≤ m ≤ n, G has a (u, v)-5

path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998)6

proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G)+1,7

then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-8

pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 79

vertices, if NC2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently,10

the conjecture of Wei and Zhu is proved as NC2(G) ≥ NC(G). Furthermore, we11

show that the lower bound is best possible and characterize all 2-connected graphs12

with NC2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.13

Keywords Pan-connected graphs · Neighborhood unions14

Mathematics Subject Classification (2000) 05C3815

1 Introduction16

We consider finite, undirected simple graphs in this note. Undefined notations and17

terminology will follow those in [1]. Let G be a graph. As in [1], κ(G) and δ(G)18

K. Zhao (B)
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K. Zhao

denote the connectivity and the minimum degree of G, respectively. If H is a subgraph19

of G and v ∈ V (G), then the neighborhood of v in H , is defined as NH (v) =20

{u ∈ V (H) : uv ∈ E(G)}. We further denote NG [v] = NG(v) ∪ {v}. A path21

x0x1 · · · xm is also referred to as an (x0, xm)-path of length m. For u, v ∈ V (G), the22

distance between u and v in G, denoted dG(u, v), is the length of a shortest (u, v)-23

path. The set NG(v) is sometimes denoted as N (v) and dG(u, v) as d(u, v), when24

G is understood in the context. Let P = (u, v) denote a path in the direction from25

u to v in G and x ∈ V (P). We denote by x+ its successor if x �= v and x− its26

predecessor if x �= u. Let w ∈ V (G) and N+
P (w) = {w+ : w ∈ V (P) − {v}}27

and N−
P (w) = {w− : w ∈ V (P) − {u}}. Suppose that T = x j x j+1 · · · x j+k is a28

path. If x1, . . . , x j−1, x j+k+1, . . . , x j+k+t ∈ V (G) − V (T ), and if x1 · · · x j−1x j and29

x j+k · · · x j+k+t are paths of G, then x1 · · · x j−1x j T x j+k+1 · · · x j+k+t represent the30

path x1 · · · x j+k+t in G.31

For an integer l ≥ 1, if for any u, v ∈ V (G) and any integer m with l ≤ m ≤ n,32

G has a (u, v)-path of length m, then G is [l, n]-pan-connected. Define NC(G) =33

min{|N (u) ∪ N (v)| : u, v ∈ V (G) and uv �∈ E(G)}. The sizes of the neighborhood34

unions have been used to study hamiltonian graphs and pan-connected graphs. The35

following theorems have been obtained.36

Theorem 1.1 (Faudree et al. [2]) Let G be a graph with |V (G)| = n and κ(G) ≥ 2.37

If NC(G) ≥ n − δ(G), then G is hamiltonian.38

Theorem 1.2 (Wei and Zhu [3]) Let G be a graph with |V (G)| = n ≥ 7 and κ(G) ≥39

3. If NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected.40

In [3], Wei and Zhu conjectured that for a graph G with |V (G)| = n ≥ 7 and41

κ(G) ≥ 3, if NC(G) ≥ n − δ(G) + 1, then G is [5, n]-connected. It is proved in this42

paper.43

Theorem 1.3 Let G be a graph with |V (G)| = n ≥ 7 and κ(G) ≥ 3. If NC(G) ≥44

n − δ(G) + 1, then G is [5, n]-pan-connected.45

In fact, we prove a stronger theorem for two-connected graphs in which we charac-46

terize the class of all graphs which are not [4, n]-pan-connected. Define NC2(G) =47

min{|N (u) ∪ N (v)| : u, v ∈ V (G) and dG(u, v) = 2}. Clearly, NC2(G) ≥ NC(G).48

Theorem 1.4 Let G be a 2-connected graph with |V (G)| = n ≥ 7. If NC2(G) ≥49

n − δ(G) + 1, then G is [4, n]-pan-connected if and only if G �∈ {G1, G2, G3} (as in50

Figs. 1, 2, 3).51

In Fig. 1, Kt (t ≥ 3) is a complete graph, |NKt (y0)| ≥ 1, |NKt (x1)| ≥ 1; if52

y0x1 /∈ E(G), then for any w ∈ V (Kt ), exactly one of {wy0, wx1} is in E(G);53

if y0x1 ∈ E(G), wx1 and wy0 are not both in E(G). In Fig. 2, Kt is a complete54

graph, NKt (ui ) = {ti }, i = 1, 2, NKt (x1) ∩ {t1, t2} = ∅ and x1 is adjacent to at least55

two vertices in V (Kt ) − {t1, t2}. In Fig. 3, Kt , Km are complete graphs, d(x0) ≥56

3, d(xm) ≥ 3 and N (x0) ⊆ V (Kt ) ∪ V (Km), N (x0) ⊆ V (Kt ) ∪ V (Km). In Fig. 4,57

let L1
∼= K4 be a graph with V (L1) = {x0, x1, x2, y1

0 }, and let L2
∼= K C

3 be a graph58
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Pan-connectedness of graphs with large neighborhood unions

Fig. 1 G1

Fig. 2 G2

Fig. 3 G3, 1 < t ≤ m

Fig. 4 G1

with V (L2) = {z0, y1, y2}, and let L3
∼= Kn−7 with n − 7 ≥ 2. Assume that all the59

L i ’s are vertex disjoint. Let G4 be obtained from L1 ∪ (L2 ∨ L3) by adding four edges60

y1
0 z0, x1 y1, z0 y1 and x2 y2. Thus each Gi (i = 1, 2, 3) denotes a family of graphs. We61

also use Gi to denote a particular member in this family.62

Clearly, if G is complete, Theorem 1.4 holds. Throughout the following sections of63

this paper we assume that G is not a complete graph. We shall prove our main theorem64

by induction. In Sect. 3, we deal with the induction basis and in Sect. 4, we complete65

the induction step.66

2 Lemmas67

Let Pm = x0x1 · · · xm be an (x, y)-path of length m in G, where x = x0 and y = xm68

are called the ends, x1, x2, . . . , xm−1 are called the inner vertices. Throughout the69

following sections we assume that G is a 2-connected graph with |V (G)| = n ≥ 770
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K. Zhao

such that71

NC2(G) ≥ |V (G)| − δ(G) + 1 = n − δ + 1. (1)72

If δ(G) = 2, then NC2(G) ≥ n − 1. Since G is not complete, ∃u, v ∈ V (G) such73

that d(u, v) = 2. Clearly u, v /∈ N (u) ∪ N (v) and it follows that |N (u) ∪ N (v)| ≤74

|V (G) − {u, v}| ≤ n − 2, a contradiction. So75

δ(G) ≥ 3. (2)76

Lemma 2.1 If δ(G) = 3 and a, b ∈ V (G) with d(a, b) = 2, then for any x ∈77

V (G) − {a, b}, x ∈ N (a) ∪ N (b).78

Proof If ∃x ∈ V (G)−{a, b} such that x /∈ N (a)∪N (b), then NC2 ≤ |N (a)∪N (b)| ≤79

|V (G)| − |{x}| − |{a, b}| ≤ n − 3 = n − δ, contrary to (1). ⊓⊔80

Lemma 2.2 Let x, y ∈ V (G) and Pm = x0x1 · · · xm be an (x, y)-path of length m81

with x = x0 and y = xm . Then each of following holds.82

(i) If Pm is a shortest (x, y)-path, then m ≤ 4;83

(ii) If Pm is a shortest (x, y)-path with dG(x, y) ≥ 2, then G also has an (x, y)-path84

of length m + 1.85

(iii) If dG(x, y) = 1 and Pm is a shortest (x, y)-path in G − xy, then m ≤ 4;86

(iv) If dG(x, y) = 1 and Pm is a shortest (x, y)-path in G − xy with m ≥ 3, then87

G − xy also has an (x, y)-path of length m + 1 and so does G.88

Proof (i) By way of contradiction we assume that m ≥ 5. Since Pm is a shortest89

(x, y)-path in G with m ≥ 5, d(x0, x2) = 2 and NPm (xm) = {xm−1}, xm−1x0,90

xm−1x2 /∈ E(G). If NG−V (Pm )(xm)∩ (NG(x0)∪ NG(x2)) = ∅, then |NG(x0)∪91

NG(x2)| ≤ |V (G)| − |NG−V (Pm)(xm) ∪ {xm−1}| = |V (G)| − |NG(xm)| =92

n−δ(G), a contradiction. So ∃u ∈ NG−V (Pm )(xm) such that u ∈ N (x0)∪N (x2).93

Then either x0uxm is an (x, y)-path of length 2 or x0x1x2uxm is an (x, y)-path94

of length 4 in G, which contradicts that Pm is a shortest (x, y)-path with m ≥ 5.95

(ii) Since d(x, y)≥2 and Pm is a shortest (x, y)-path, d(x0, x2) = 2 and NPm (x1) =96

{x0, x2}. Then ∃u ∈ N (x1) − {x0, x2} such that u ∈ N (x0) ∪ N (x2) otherwise97

|N (x0) ∪ N (x2)| ≤ |V (G)| − |N (x1)| ≤ n − δ(G), a contradiction. Then98

x0ux1x2 · · · xm or x0x1ux2x3 · · · xm is an (x, y)-path of length m + 1.99

(iii) By way of contradiction we assume that m ≥ 5. Since Pm is a shortest (x, y)-100

path in G − xy with m ≥ 5, d(x0, x2) = 2 and NPm (xm) = {xm−1, x0},101

xm−1x0, xm−1x2 /∈ E(G). Then ∃u ∈ NG−Pm (xm) such that u ∈ N (x0)∪N (x2)102

otherwise |N (x0) ∪ N (x2)| ≤ |V (G)| − |NG−Pm (xm) ∪ {x0, xm−1}| = n −103

|N (xm)| ≤ n − δ(G), a contradiction. So x0uxm is an (x, y)-path of length 2104

or x0x1x2uxm is an (x, y)-path of length 4 in G − xy, contrary to the fact that105

x0x1 · · · xm is a shortest (x, y)-path in G − xy with m ≥ 5.106

(iv) Since m ≥ 3 and Pm is a shortest (x, y)-path in G − xy, dG(x0, x2) = 2107

and NG(x1) ∩ V (Pm) = {x0, x2}. Then ∃u ∈ N (x1) − {x0, x2} such that108
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Pan-connectedness of graphs with large neighborhood unions

u ∈ N (x0)∪N (x2) otherwise |N (x0)∪N (x2)| ≤ |V (G)|−|N (x1)| ≤ n−δ(G),109

a contradiction. Then x0ux1x2 · · · xm or x0x1ux2x3 · · · xm is an (x, y)-path of110

length m + 1 in G − xy. ⊓⊔111

Lemma 2.3 Let x, y ∈ V (G), Pm = x0x1 · · · xm be an (x, y)-path of length m and112

and for some i with 0 ≤ i < m, ∃u ∈ NG−Pm (xi ), v ∈ NG−Pm (xi+1) with u �= v for113

xi , xi+1 ∈ V (Pm). If G does not have an (x, y)-path of length m +2, then uv /∈ E(G).114

Proof If uv ∈ E(G), then x0x1 · · · xi uvxi+1 · · · xm is an (x, y)-path of length m + 2,115

a contradiction. ⊓⊔116

3 Base case117

Theorem 3.1 For any pair of distinct vertices x, y ∈ V (G), one of the following118

holds.119

(i) G ∈ {G1} (see Fig. 1) and G has (x, y)-paths of length of 5 and 6;120

(ii) G /∈ {G1} and ∃k ∈ {2, 3, 4} such that G has (x, y)-paths of length k and k + 1.121

Proof By Lemma 2.2(i), ∃ a shortest (x, y)-path of length ≤ 4. If dG(x, y) = 2, 3122

or 4, by Lemma 2.2(ii), G has an (x, y)-path of length 3, 4, 5 respectively, done.123

Next we assume that dG(x, y) = 1. Let Pm be a shortest (x, y)-path in G − xy. By124

Lemma 2.2(iii) and (iv) if dG−xy(x, y) = 3 or 4, then G has an (x, y)-path of length125

4, 5 respectively, done. So we assume that dG−xy(x, y) = 2. Let x0x1x2 = P2 be a126

shortest (x, y)-path of length 2 in G − xy. Since dG(x, y) = 1, x0x2 ∈ E(G). By way127

of contradiction, we assume that128

G does not have an (x, y)-path of length 3. (3)129

Since δ(G) ≥ 3, NG−P2(x0) �= ∅ and NG−P2(x2) �= ∅.130

Case 1 ∃u ∈ NG−P2(x0) but u /∈ NG−P2(x2). Since x0x2 ∈ E(G), dG(u, x2) = 2.131

By (3) x1u /∈ E(G). Then ∃v ∈ N (x1) − {x0, x2} such that u �= v ∈ N (u) ∪ N (x2)132

otherwise |N (u)∪N (x2)| ≤ |V (G)|−|N (x1)−{x0}∪{u}| ≤ n−δ(G), a contradiction.133

By (3) vx2 /∈ E(G). So vu ∈ E(G) and x0uvx1x2 is an (x, y)-path of length 4. Since134

ux1 /∈ E(G), ux2 /∈ E(G) and δ(G) ≥ 3, NG−P2−v(u) �= ∅. Since d(v, x2) = 2 and135

ux2 /∈ E(G), then ∃u1 ∈ NG(u)−{x0, v, x2} such that u1 ∈ N (v)∪ N (x2) otherwise136

|N (v) ∪ N (x2)| ≤ |V (G)| − |N (u) − {x0} ∪ {x2}| ≤ n − δ(G), a contradiction. If137

u1x2 ∈ E(G), x0uu1x2 is an (x, y)-path of length 3, contrary to (3). If u1v ∈ E(G),138

x0uu1vx1x2 is an (x, y)-path of length 5 and so G has an (x, y)-path of length 4 and139

5, done.140

Case 2 NG−P2(x0) ⊆ N (x2). By symmetry, NG−P2(x0) = NG−P2(x2).141

If NG−P2(x0) has two vertices (say z1, z2) adjacent to each other, then by NG−P2142

(x0) = NG−P2(x2), x0z1z2x2 is an (x0, x2)-path of length 3, contrary to (3). Thus143
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K. Zhao

NG−P2(x0) = NG−P2(x2) is an independent set. (4)144

For any v ∈ NG−P2(x1), if v ∈ NG(x0) ∪ NG(x2), then x0vx1x2 or x0x1vx2 is an145

(x0, x2)-path of length 3, contrary to (3). So146

NG−P2(x1) ∩ (NG−P2(x0) ∪ NG−P2(x2)) = ∅. (5)147

Subcase 2.1 δ(G) ≥ 4. Then |NG−P2(x0)| ≥ 2. By NG−P2(x0) = NG−P2(x2), let148

u1, u2 ∈ NG−P2(x0) = NG−P2(x2). By (5), u1, u2 /∈ NG−P2(x1). By (4), d(u1, u2) =149

2. If NG−P2(x1) ∩ (NG−P2(u1) ∪ NG−P2(u2)) = ∅, then |NG(u1) ∪ NG(u2)| ≤150

|V (G)|−|N [x1]−{x0, x2}∪{u1}| ≤ n−δ, a contradiction. So ∃v1 ∈ NG−P2(x1) such151

that v1u1 ∈ E(G) or v1u2 ∈ E(G). Without loss of generality we assume that v1u1 ∈152

E(G). Then x0u1v1x1x2 is an (x, y)-path of length 4. By (3) v1x0 /∈ E(G), v1x2 /∈153

E(G). As δ(G) ≥ 4, NG(v1) − V (P2) − {u1, u2} �= ∅. Since d(u1, u2) = 2,154

∃v′
1 ∈ NG(v1) − {x1, u1, u2} such that either v′

1u1 ∈ E(G) or v′
1u2 ∈ E(G) other-155

wise |NG(u1) ∪ NG(u2)| ≤ |V (G)| − |N (v1)| ≤ n − δ(G), a contradiction. Then156

x0u1v
′
1v1x1x2 or x0u2v

′
1v1x1x2 is an (x, y)-path of length 5, respectively. Hence G157

has an (x, y)-path of length 4 and 5, done.158

Subcase 2.2 δ(G) = 3. If |NG−P2(x0)| ≥ 2, let u1, u2 ∈ NG−P2(x0). By (4),159

d(u1, u2) = 2. By Lemma 2.1, x1 ∈ N (u1) ∪ N (u2), then x0u1x1x2 or x0u2x1x2160

is an (x, y)-path of length 3, contrary to (3). So |NG−P2(x0)| = |NG−P2(x2)| = 1.161

We assume that162

NG−P2(x0) = NG−P2(x2) = {y0}. (6)163

Next we show that V (G) − V (P2) − {y0} induces a complete graph. Let G1, . . . , G t164

be components of G − V (P2) − {y0}. If ∃u1, u2 ∈ V (Gi ) such that d(u1, u2) = 2,165

then by Lemma 2.1 x0 ∈ N (u1) ∪ N (u2), contrary to (6). So each component Gi166

is complete. If t ≥ 2, since κ(G) ≥ 2, by (6) each component has at least two167

vertices adjacent to x1 and to y0 respectively. Then ∃w1 ∈ V (Gi ), w2 ∈ V (G j )168

such that w1 y0 ∈ E(G), w2 y0 ∈ E(G) and so d(w1, w2) = 2. By Lemma 2.1169

x0 ∈ N (w1)∪N (w2), contrary to (6). Hence V (G)−V (P2)−{y0} induces a complete170

graph, denoted by G[V (Kt )].171

Since n ≥ 7, |V (G)−V (P2)−{y0}| = |V (Kt )| ≥ 3. Since κ(G) ≥ 2, by Menger’s172

Theorem, ∃w1, u2 ∈ V (G) − V (P2) − {y0} such that w1x1 ∈ E(G), w2 y0 ∈ E(G).173

Then x0 y0w2w1x1x2 is an (x, y)-path of length 5. If ∃u′ ∈ V (Kt ) with u′y0, u′x1 ∈174

E(G), then x0 y0u′x1x2 is an (x, y)-path of length 4. Hence G has an (x, y)-path of175

length 4 and 5, done. So for any u′ ∈ V (Kt ), u′ cannot be adjacent to both y0 and176

x1. By (3), y0x1 /∈ E(G) and d(y0, x1) = 2. By Lemma 2.1, for any z ∈ V (Kt ), z ∈177

N (y0) ∪ N (x1). Therefore this is the class G3 of graphs depicted as in Fig. 1. Let178

u3 ∈ V (Kt ) − {w1, w2}. Then x0 y0w2w1x1x2 and x0 y0w2u3w1x1x2 are (x, y)-path179

of length 5 and 6, respectively. ⊓⊔180
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4 Proof of Theorems 1.3 and 1.4 (Induction)181

Lemma 4.1 Let Pm be an (x, y)-path of length m and u ∈ V (G) − V (Pm) with182

|N+
Pm

(u)| ≥ 2. If G does not have an (x, y)-path of length m + 2, then one of the183

following must hold.184

(i) ∃ a pair xi+1, x j+1 ∈ N+
Pm

(u) such that xi+1x j+1 ∈ E(G);185

(ii) for every pair of xk+1, xh+1 ∈ N+
Pm

(u) (where k < h) with {xk+1, xk+2, . . . , xh−1}186

∩ NPm (u) = ∅, ∃r, s, t such that one of the following holds187











xr xk+1, xh+1xr+1 ∈ E(G) : 1 ≤ r < k

xs+1xk+1, xh+1xs ∈ E(G) : k + 1 < s < h

xt xk+1, xh+1xt+1 ∈ E(G) : h + 1 < t < m

188

Proof We assume that (i) fails to prove (ii). By contradiction, assume further that no189

such r, s or t can be found. Since (i) does not hold, xk+1 �= xh . And as {xk+1, xk+2, . . . ,190

xh−1}∩NPm (u) = ∅, d(u, xk+1) = 2. By Lemma 2.3, NG−Pm (xh+1)∩NG−Pm (u) = ∅.191

If ∃w ∈ NG−Pm (xh+1) such that wxk+1 ∈ E(G), then x0 · · · xkuxh xh−1 · · · xk+1192

wxh+1 · · · xm is an (x, y)-path of length m + 2, contrary to the assumption. So193

NG−Pm (xh+1) ∩ NG−Pm (xk+1) = ∅. Let T1 = x0x1 · · · xk , T2 = xk+1xk+2 · · · xh194

and T3 = xh+1xh+2 · · · xm . Since {xk+1, xk+2, . . . , xh−1} ∩ NPm (u) = ∅ and (i), (ii)195

do not hold, for any z ∈ NG(xk+1) ∪ NG(u),196

z �∈ N−
T1−{x0}(xh+1) ∪ N+

T2−{xh}(xh+1) ∪ N−
T3

(xh+1).197

and N−
T1−{x0}(xh+1), N+

T2−{xh}(xh+1) and N−
T3

(xh+1) are pairwise disjoint. Then |NG198

(xk+1)∪ NG(u)| ≤ |V (G)|− (|NG−Pm (xh+1)|+ |N−
T1−{x0}(xh+1)∪ N+

T2−{xh}(xh+1)∪199

N−
T3

(xh+1) ∪ {u, xk+1} − {x0, xh}|) = |V (G)| − |NG−Pm (xh+1) ∪ NPm (xh+1)| ≤200

n − δ(G), contrary to (1). ⊓⊔201

Corollary 4.2 Let Pm be an (x, y)-path of length m and u ∈ V (G) − V (Pm) with202

|N+
Pm

(u)| ≥ 2. If G does not have an (x, y)-path of length m + 2, then G has an203

(x, y)-path Pm+1 of length m + 1 with V (Pm+1) = V (Pm) ∪ {u}.204

Proof If Lemma 4.1(i) holds, then ∃xk+1, xh+1 ∈ N+
Pm

(u) with xk+1xh+1 ∈ E(G)205

(k < h < m). Hence x0x1 · · · xkuxh xh−1 · · · xk+1xh+1 · · · xm is an (x0, xm)-path of206

length m +1. Next we assume that Lemma 4.1(ii) holds. If xr xk+1, xh+1xr+1 ∈ E(G),207

then x0x1 · · · xr xk+1xk+2 · · · xhuxk xk−1 · · · xr+1 xh+1xh+2 · · · xm is an (x0, xm)-path208

of length m + 1. If xs+1xk+1, xh+1xs ∈ E(G), then x0x1 · · · xkuxh xh−1 · · · xs+1xk+1209

xk+2 · · · xs xh+1xh+2 · · · xm is an (x0, xm)-path of length m +1. If xt xk+1, xh+1xt+1 ∈210

E(G), then x0x1 · · · xku xh xh−1 · · · xk+1xt xt−1 · · · xh+1xt+1xt+2 · · · xm is an (x0, xm)-211

path of length m + 1. ⊓⊔212

Lemma 4.3 Let Pm = x0x1x2 · · · xm be an (x, y)-path of length m in G. If ∃w,w′ ∈213

V (G) − V (Pm) satisfying both of the following,214

123

Journal: 605 MS: 0013 CMS: 605_2008_13_Article TYPESET DISK LE CP Disp.:2008/7/24 Pages: 15 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

K. Zhao

(i) both |NPm (w)| ≥ 2 and |NPm (w′)| ≥ 2 , and215

(ii) both NPm (w) − {x0, xm} �= ∅ and NPm (w′) − {x0, xm} �= ∅, then G has an216

(x, y)-path of length m + 2.217

Proof By way of contradiction, we assume that G does not have an (x, y)-path of218

length m + 2. If |N+
Pm

(w)| = |N+
Pm

(w′)| = 1, then xm ∈ NPm (w), xm ∈ NPm (w′).219

Reverse the order of Pm to get P ′
m , then by (i) and (ii) |N+

P ′
m
(w)| ≥ 2, |N+

P ′
m
(w′)| ≥ 2.220

So we may assume that {xi , x j } ⊆ NPm (w) with 0 ≤ i < j < m. By Corollary 4.2,221

G has an (x0, xm)-path Pm+1 with V (Pm+1) = V (P ′
m) ∪ {w}.222

Note that NPm (w′) ⊆ V (Pm) ⊆ V (Pm+1). Thus |NPm+1(w
′)| ≥ 2. If xm �∈223

NPm+1(w
′) or if |NPm+1(w

′)| ≥ 3, then |N+
Pm+1

(w′)| ≥ 2, and we can apply Corol-224

lary 4.2 to Pm+1 and w′ to find an (x0, xm+2)-path Pm+2 with V (Pm+2) = V (Pm+1)∪225

{w′}. Therefore, we may assume that NPm+1(w
′) = NPm (w′) = {xl , xm}, with226

0 < l < m. Reverse the order of Pm+1 to get an (xm+1, x0)-path Qm+1. Then227

|N+
Qm+1

(w′)| ≥ 2, and so we can apply Corollary 4.2 to Qm+1 and w′ to find an228

(xm+2, x0)-path Qm+2 with V (Qm+2) = V (Qm+1) ∪ {w′}. Therefore, in any case,229

we can find an (x0, xm)-path of length m + 2, a contradiction. ⊓⊔230

Theorem 4.4 Let x, y ∈ V (G). If G has an (x, y)-path P2 = x0x1x2 of length 2,231

then either G ∈ {G1, G2, G4} (see Figs. 1, 2, 4) or G has an (x, y)-path of length 4.232

Proof By way of contradiction we assume that233

G does not have an (x, y)-path of length 4. (7)234

Case 1 δ(G) = 3. Then N (x0) − {x1, x2} �= ∅ and N (x2) − {x0, x1} �= ∅.235

Subcase 1.1 |NG−P2(x0) ∪ NG−P2(x2)| ≥ 2. Then ∃y0, y2 ∈ V (G) − V (P2) with236

y0 �= y2 such that x0 y0, x2 y2 ∈ E(G). First we assume that y0 y2 ∈ E(G).237

By Lemma 2.3 for each i ∈ {0, 2}, yi x1 �∈ E(G) and so d(yi , x1) = 2. Then by238

Lemma 2.1, NG(yi )∪ NG(x1) = V (G)−{yi , x1}. If ∃u ∈ V (G)− (V (P2)∪{y0, y2})239

such that uy0 ∈ E(G), then by Lemma 2.3, ux1 �∈ E(G). Since d(y2, x1) = 2, by240

Lemma 2.1 uy2 ∈ E(G), then x0 y0uy2x2 is an (x, y)-path of length 4, contrary to (7).241

So by symmetry242

for any u ∈ V (G) − (V (P2) ∪ {y0, y2}), uy0, uy2 /∈ E(G). (8)243

Since d(y0, x1) = 2, by Lemma 2.1, for any u ∈ V (G) − (V (P2) ∪ {y0, y2}), ux1 ∈244

E(G). Therefore V (G) − (V (P2) ∪ {y0, y2}) ⊆ NG(x1).245

Since n ≥ 7, |V (G)− (V (P2)∪{y0, y2})| ≥ 2. If there exist two vertices w1, w2 ∈246

V (G)−(V (P2)∪{y0, y2}) such that d(w1, w2) = 2, then by Lemma 2.1, we must have247

y0 ∈ NG(w1) ∪ NG(w2), contrary to (8). It follows that V (G) − (V (P2) ∪ {y0, y2})248

induces a complete subgraph Kt
∼= Kn−5, where n − 5 ≥ 7 − 5 = 2. Since G249

is 2-connected, x1 is not a cut vertex of G, and also NG−Pm (x1) ∩ (NG−Pm (y0) ∪250

NG−Pm (y2)) = ∅ by (8), we can find u1 ∈ V (G) − (V (P2) ∪ {y0, y2}) such that251

u1x0 ∈ E(G) (or respectively, u1x2 ∈ E(G)). Since |V (G)−(V (P2)∪{y0, y2})| ≥ 2,252
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∃u2 ∈ V (G)−(V (P2)∪{y0, y2, u1}). Hence x0u1u2x1x2 (or respectively, x0x1u2u1x2)253

is an (x0, x2)-path of length 4, contrary to (7).254

Next we assume y0 y2 �∈ E(G). By (7), at most one edge in {y0x1, y2x1} is in255

E(G) and we assume that y2x1 /∈ E(G). So d(y2, x1) = 2 and by Lemma 2.1256

and y0 y2 �∈ E(G), y0x1 ∈ E(G). If ∃u′ ∈ NG(y0) − (V (P2) ∪ {y0, y2}), then by257

Lemma 2.1, u′ ∈ NG(x1) ∪ NG(y2). Each case is contrary to Lemma 7. Thus258

NG(y0) ⊆ V (P2). (9)259

Since δ(G) = 3, y0x2 ∈ E(G). Then d(y0, y2) = 2. As y0 y2 �∈ E(G), dG(y0, y2) =260

2. By (9) and Lemma 2.1, V (G) − (V (P2) ∪ {y0, y2}) ⊆ NG(y2). Since n ≥ 7,261

|V (G) − (V (P2) ∪ {y0, y2})| ≥ 2. Let u1, u2 ∈ V (G) − (V (P2) ∪ {y0, y2}), if262

u1u2 �∈ E(G), then by Lemma 2.1, x1 ∈ NG(u1) ∪ NG(u2), contrary to Lemma 2.3.263

Hence V (G) − (V (P2) ∪ {y0, y2}) induces a complete subgraph Kt
∼= Kn−5 in G.264

Since κ(G) ≥ 2 and NG(y0) ⊆ V (P2), we may assume that u1 ∈ NG(x0) and265

u2 ∈ NG(y2). It follows that x0u1u2 y2x2 is an (x0, x2)-path of length 4, contrary to266

(7). Therefore, Case 1.1 is precluded.267

Subcase 1.2 |NG−P2(x0) ∪ NG−P2(x2)| = 1. Let y0 ∈ NG−P2(x0) ∪ NG−P2(x2).268

Since δ(G) = 3 and NG−P2(x0)∪ NG−P2(x2) = {y0}, we must have x0x2 ∈ E(G)269

and for any y ∈ V (G) − V (P2) − y0, yx0, yx2 /∈ E(G). Then270

NG(x0) − {x2} = NG(x2) − {x0} = {x1, y0}. (10)271

Since κ(G) ≥ 2, if G − V (P2) − {y0} is not connected, then by (10) each component272

is adjacent to both y0 and x1. So ∃u, v from two different components such that273

uy0, vy0 ∈ E(G) and thus d(u, v) = 2. So |NG(u) ∪ NG(v)| ≤ n − |{x0, x2, u}| =274

n − 3 = n − δ(G), a contradiction. Similarly we can prove that V (G)− V (P2)−{y0}275

induces a complete subgraph Kt of G. If ∃u′ ∈ V (Kt ) with u′y0, u′x1 ∈ E(G), then276

x0 y0u′x1x2 is an (x, y)-path of length 4, contrary to (7). So for any u′ ∈ V (Kt ),277

if u′y0 ∈ E(G), then u′x1 /∈ E(G) and if u′x1 ∈ E(G), then u′y0 /∈ E(G). If278

y0x1 /∈ E(G), then d(y0, x1) = 2. By Lemma 2.1, for any w ∈ V (G)−V (P2)−{y0},279

exactly one of wy0 ∈ E(G) and wx1 ∈ E(G) holds. If y0x1 ∈ E(G), then for any280

w ∈ V (G) − V (P2) − {y0}, w is not adjacent to both y0 and x1. This class G1 of281

graphs is depicted in Fig. 1.282

Case 2 δ(G) ≥ 4.283

Subcase 2.1 |NG−P2(x0) ∩ NG−P2(x1)| ≥ 1 or |NG−P2(x2) ∩ NG−P2(x1)| ≥ 1.284

We may assume that y1
0 ∈ NG−P2(x0) ∩ NG−P2(x1). Since δ(G) ≥ 4, ∃y1 ∈285

NG−P2−y1
0
(x1). By Lemma 2.3 y1

0 y1 /∈ E(G). By δ(G) ≥ 4, ∃z0 ∈ NG−P2−{y1}(y1
0).286

By (7), z0x1, z0x2 /∈ E(G) and NG−P2−y1
0
(x2)∩ (NG−P2−y1

0
(z0)∪ NG−P2−y1

0
(x1)) =287

∅. We have the following observations.288

(A) y1
0 x2 ∈ E(G) and x0x2 ∈ E(G). Otherwise if y1

0 x2 /∈ E(G), then |N (z0) ∪289

N (x1)| ≤ |V (G)| − |N (x2) − {x0} ∪ z0| = n − δ(G), a contradiction; if x0x2 /∈290
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E(G), then |N (z0) ∪ N (x1)| ≤ |V (G)| − |N (x2) − {y1
0} ∪ z0| = n − δ(G), a291

contradiction.292

(B) Let y2 ∈ NG−P2−{y1
0 ,y1}

(x2). Then x0 y2 ∈ E(G) and N (x0) = {x1, x2, y1
0 , y2}.293

So δ(G) = 4.294

If ∃y0 ∈ N (x0)−V (P2)−{y1
0 , y1, y2}, then y0 y1

0 /∈ E(G) otherwise x0 y0 y1
0 x1x2 is295

an (x, y)-path of length 4, contrary to (7). So |N (y1
0) ∪ N (y0)| ≤ |V (G)| − |N (y2) −296

{x0, x2} ∪ {y1
0 , y1}| = n − δ(G), contrary to (1). Since δ(G) ≥ 4, y1

0 y2 ∈ E(G) and297

so N (x0) = {x1, x2, y1
0 , y2}.298

(C) d(x1)=d(x2)=4, and so N (x1)={x0, x2, y1
0 , y1} and N (x2)={x0, x1, y1

0 , y2}.299

By Lemma 2.3, NG−P2(x1)∩ (N (y1
0)∪ N (y2)) = ∅. If |N (x1)| ≥ 5, then |N (y1

0)∪300

N (y2)| ≤ |V (G)| − |N (x1) − {x0, x2} ∪ y2| ≤ n − 4 = n − δ(G), contrary to (1).301

Similarly, if |N (x2)| ≥ 5, |N (y1
0) ∪ N (y1)| ≤ |V (G)| − |N (x2) − {x0, x1} ∪ y1| ≤302

n − 4 = n − δ(G), a contradiction.303

(D) N (y1
0) = {x0, x1, x2, z0}.304

If |N (y1
0)| ≥ 5, then |N (x1) ∪ N (y2)| ≤ |V (G)| − |N (y1

0) − {x0, x2} ∪ y2| ≤305

n − 4 = n − δ(G), a contradiction.306

(E) z0 y1 ∈ E(G) and z0 y2 /∈ E(G). So NG[P2∪{y1
0 ,y1,y2}]

(z0) = {y1
0 , y1}.307

By (D), if z0 y1 /∈ E(G), then |N (x0) ∪ N (y1)| ≤ |V (G)| − |N (y1
0) − {x1, x2} ∪308

{z0, y1}| = n − 4, a contradiction. If z0 y2 ∈ E(G), then x0 y1
0 z0 y2 is an (x, y)-path of309

length 4, contrary to (7). By (B) and (C), NG[P2∪{y1
0 ,y1,y2}]

(z0) = {y1
0 , y1}.310

(F) For any v ∈ V (G) − V (P2) − {y1
0 , y1, y2, z0}, vz0, vy1, vy2 ∈ E(G).311

If ∃v ∈ V (G)−V (P2)−{y1
0 , y1, y2, z0} such that vy2 /∈ E(G), |N (x1)∪ N (y2)| ≤312

|V (G)|−|{z0, x1, y2, v}| = n−4, a contradiction; if vy1 /∈ E(G), |N (y1
0)∪ N (y1)| ≤313

|V (G)|−|{y1
0 , y1, y2, v}| = n−4, a contradiction; if vz0 /∈ E(G), |N (z0)∪ N (x1)| ≤314

|V (G)| − |{z0, x1, y2, v}| = n − 4, a contradiction.315

(G) For any v1, v2 ∈ V (G) − V (P2) − {y0, y1, y2, z0}, v1v2 ∈ E(G).316

If ∃v1, v2 ∈ V (G) − V (P2) − {y0, y1, y2, z0} such that v1v2 /∈ E(G), then by317

(F), d(v1, v2) = 2. By (B), (C) and (D), (y1
0 ∪ V (P2)) ∩ (N (v1) ∪ N (v2)) = ∅, then318

|N (v1) ∪ N (v2)| ≤ |V (G)| − |y1
0 ∪ V (P2)| = n − 4 = n − δ(G), contrary to (1).319

By combining (A)–(G), we conclude that G ∈ {G4}.320

Subcase 2.2 |NG−P2(x0) ∩ NG−P2(x1)| = 0 and |NG−P2(x2) ∩ NG−P2(x1)| = 0.321

Then by symmetry for any y1 ∈ NG−P2(x1), y1x0 /∈ E(G) and y1x2 /∈ E(G).322

First we show that NG−P2(x0) is complete. If ∃y1
0 , y2

0 ∈ NG−P2(x0) such that323

y1
0 y2

0 /∈ E(G), then d(y1
0 , y2

0 ) = 2. By Lemma 2.3 NG−P2(x1) ∩ (NG−P2(y1
0) ∪324

NG−P2(y2
0 )) = ∅, then |NG(y1

0) ∪ NG(y2
0 )| ≤ |V (G)| − |NG(x1) − {x0, x2} ∪325

{y1
0 , y2

0 }| ≤ n − δ(G), a contradiction. So NG−P2(x0) is complete. Next we show326

123

Journal: 605 MS: 0013 CMS: 605_2008_13_Article TYPESET DISK LE CP Disp.:2008/7/24 Pages: 15 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

Pan-connectedness of graphs with large neighborhood unions

NG−P2(x0) = NG−P2(x2). If ∃y1
0 ∈ NG−P2(x0) such that y1

0 x2 /∈ E(G), then327

d(y1
0 , x2) = 2. Since NG−P2(x1)∩ NG−P2(x2) = ∅, and by Lemma 2.3, NG−P2(x1)∩328

NG−P2(y1
0) = ∅, we have |NG(y1

0) ∪ NG(x2)| ≤ |V (G)| − |NG(x1) − {x0} ∪ {y1
0}| ≤329

n − δ(G), a contradiction. By symmetry,330

NG−P2(x0) = NG−P2(x2) is complete. (11)331

If x0x2 /∈ E(G), then d(x0, x2) = 2. By Subcase 2.2 assumption that NG−P2(x1) ∩332

(NG−P2(x0) ∪ NG−P2(x2)) = ∅, so |NG(x0) ∪ NG(x2)| ≤ |V (G)| − |NG(x1)| ≤333

n − δ(G), a contradiction. So x0x2 ∈ E(G).334

If |NG−P2(x0)| ≥ 3, let u1, u2, u3 ∈ NG−P2(x0). By (11), x0u1u2u3x2 is an (x, y)-335

path of length 4, contrary to (7). So we must have |NG−P2(x0)| = 2 since δ(G) ≥ 4.336

Then δ(G) = 4 and let NG−P2(x0) = {u1, u2}. We show that V (G)−V (P2)−{u1, u2}337

induces a complete graph. If ∃v1, v2 ∈ V (G)−V (P2)−{u1, u2} such that d(v1, v2) =338

2, then x0, x2 /∈ NG(v1) ∪ NG(v2), contrary to (1). Let Kt denote the graph induced339

by V (G) − V (P2) − {u1, u2}. By Lemma 2.3, NKt (x1) ∩ (NKt (u1) ∪ NKt (u2)) = ∅.340

By (7) NKt (u1) ∩ NKt (u2) = ∅. Since d(x1, u1) = d(x1, u2) = 2, δ(G) ≥ 4,341

|NKt (u1)| = |NKt (u2)| = 1. Thus the class of graphs is depicted in Fig. 2. Hence342

G ∈ {G2}. ⊓⊔343

Theorem 4.5 Let x, y ∈ V (G). If G has an (x, y)-path Pm = x0x1 · · · xm of length344

m with 3 ≤ m ≤ |V (G)| − 2, then G has an (x, y)-path of length m + 2 or G ∈ {G3}345

(Fig. 3).346

Proof By way of contradiction we assume that347

G does not have an (x, y)-path of length m + 2. (12)348

By Lemma 4.3, we may assume that349

|{w ∈ V (G) − V (Pm) : |NPm (w)| ≥ 2 and NPm (w) − {x0, xm} �= ∅}| ≤ 1.(13)350

Case 1 ∃w ∈ V (G)−V (Pm) such that wxi ∈ E(G) for some xi ∈ V (Pm)−{x0, xm}351

and for any v ∈ V (G) − V (Pm) − w, NPm (v) ⊆ {x0, xm}.352

Claim 1 (i) G[V (G) − V (Pm) − w] is complete.353

(ii) G[V (Pm) − {x0, xm}] is complete.354

(iii) NG(w) ⊆ V (Pm).355

(iv) G[V (Pm) − {x0, xm} ∪ w] is complete.356

Proof of Claim 1 (i) Let G1, . . . , G t be components of G[V (G) − V (Pm) − w].357

First we show that each component Gi is complete. By way of contradiction358

that we assume that ∃y1, y2 ∈ V (Gi ) such that dGi
(y1, y2) = 2. Since m ≥ 3,359

x1 ∈ V (Pm) is an inner vertex. By Case 1 assumption, NG(x1) ⊆ V (Pm) ∪ w.360

Then |NG(y1) ∪ NG(y2)| ≤ |V (G)| − |NG[x1] − {x0, xm, w} ∪ {y1, y2}| ≤361

n − δ(G), a contradiction. Hence Gi is complete.362
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K. Zhao

By the assumption of Case 1, NPm∪w(Gi ) ⊆ {x0, xm, w} for each i ∈ {1, 2, . . . , t}.363

Since κ(G) ≥ 2, |NPm (Gi )| ≥ 2. If t ≥ 2, then ∃ two vertices from distinct Gi364

and G j respectively are adjacent to a same vertex in {x0, xm, w}. Assume that ∃y′
1 ∈365

Gi , y′
2 ∈ G j such that dG(y′

1, y′
2) = 2. Then |NG(y′

1) ∪ NG(y′
2)| ≤ |V (G)| −366

|NG[x1] − {x0, xm, w} ∪ {y1, y2}| ≤ n − δ(G), a contradiction. Hence t = 1. Thus367

G[V (G) − V (Pm) − w] is complete.368

(ii) By way of contradiction we suppose that ∃xl , xk ∈ V (Pm)−{x0, xm} such that369

dG(xl , xk) = 2. Since |V (G) − V (Pm)| ≥ 2, let y ∈ V (G) − V (Pm) − w. By370

the assumption of Case 1, NPm∪w(y) ⊆ {x0, xm, w}. Since xl , xk are both inner371

vertices, |NG(xl) ∪ NG(xk)| ≤ |V (G)| − |NG [y] − {x0, xm, w} ∪ {xl , xk}| ≤372

n − δ(G), a contradiction. Thus G[V (Pm) − {x0, xm}] is complete.373

(iiii) By way of contradiction we assume that w is adjacent to some vertex w1 in374

G[V (G) − V (Pm) − w]. First we assume that xi �= x1 and xi �= xm−1. If375

w1x0 ∈ E(G) or w1xm ∈ E(G), then by Claim 1(ii), there is an (xi , xm−1)376

path T or (x1, xi ) path T ′ of length m − 2 in G[V (Pm) − {x0, xm}]. And377

so x0w1wxi T xm−1xm or x0x1T ′xiww1xm is an (x, y)-path of length m + 2,378

contrary to (12). Otherwise since κ(G) ≥ 2, ∃w2 ∈ V (G)− V (Pm)−{w,w1}379

such that either w2x0 ∈ E(G) or w2xm ∈ E(G). Similarly, if w2x0 ∈ E(G)380

or w2xm ∈ E(G), then by Claim 1(ii), there is an (xi , xm−1) path T or (x1, xi )381

path T ′ of length m −3 in G[V (Pm)−{x0, xm}]. And so x0w2w1wxi T xm−1xm382

or x0x1T ′xiww1w2xm is an (x, y)-path of length m + 2, contrary to (12).383

Suppose that xi = x1. Then by Lemma 2.3, x0w1 /∈ E(G). If ∃w2 ∈ V (G) −384

V (Pm)−{w,w1} such that w2x0 ∈ E(G), then by Claim 1(i), x0w2w1wx1x3 · · · xm is385

an (x, y)-path of length m+2, contrary to (12). So NG−V (Pm)−{w}(w1)∩NG−V (Pm )−{w}386

(x0) = ∅. If x0xm−1 /∈ E(G), then by Claim 1(ii), x1xm−1 ∈ E(G) and so d(x0,387

xm−1) = 2. Together with the assumption of Case 1, |NG(x0) ∪ NG(xm−1)| ≤388

|V (G)| − |NG(w1) − {w} ∪ {xm−1}| ≤ n − δ(G), contrary to (1). Hence x0xm−1 ∈389

E(G). If w1xm ∈ E(G), then x0xm−1xm−2 · · · x1ww1xm is an (x, y)-path of length390

m +2, contrary to (12). Otherwise since κ(G) ≥ 2 and NG−V (Pm )−{w}(x0)∩ (V (G)−391

V (Pm) − {w}) = ∅, ∃w3 ∈ V (G) − V (Pm) − {w,w1} such that w3xm ∈ E(G).392

Then x0xm−1xm−3xm−4 · · · x1ww1w3xm (m ≥ 4) or x0x1ww1w3xm (m = 3) is an393

(x, y)-path of length m + 2, contrary to (12). By symmetry the case xi = xm−1 can394

be excluded similarly as the case xi = x1.395

(iv) By Claim 1(ii) it suffices to show that wxk ∈ E(G) for k ∈ {1, 2, . . . , m − 1}.396

Assume that xi−1 ∈ V (Pm)−{x0, xm} and wxi−1 /∈ E(G). Since wxi ∈ E(G),397

d(xi−1, w) = 2. Let y ∈ V (G)−V (Pm)−w. By Claim 1(iii), NG(w) ⊆ V (Pm)398

and NG−Pm (y)∩ NG [w] = ∅. By the assumption of Case 1 NPm (y) ⊆ {x0, xm}.399

So |NG(xi−1) ∪ NG(w)| ≤ |V (G)| − |NG [y] − {x0, xm} ∪ {w, xi−1}| ≤ n −400

δ(G), contrary to (1). Hence wxi−1 ∈ E(G). Similarly wxi−k ∈ E(G) where401

k ∈ {2, . . . , i − 1} and wxi+k ∈ E(G) where k ∈ {1, 2, . . . , m − i − 1}. So402

G[V (Pm) − {x0, xm} ∪ w] is complete. ⊓⊔403

By Claim 1(iii), NG(w) ⊆ V (Pm). Since κ(G) ≥ 2 and δ(G) ≥ 3, |V (G) −404

V (Pm) − w)| ≥ 2 and ∃v, v′ ∈ V (G) − V (Pm) − w such that vx0 ∈ E(G) and405
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Pan-connectedness of graphs with large neighborhood unions

v′xm ∈ E(G). By Claim 1(i), if |V (G) − V (Pm) − w| ≥ m + 1, then there is a406

(v, v′)-path P of length m. So x0 Pxm is an (x, y)-path of length m + 2, contrary to407

(12). Hence 2 ≤ |V (G) − V (Pm) − w| ≤ m. By Claim 1(i), (iii) and (iv), this is the408

class of graphs depicted in Fig. 3 and so G ∈ {G3}.409

Case 2 For any w ∈ V (G) − V (Pm), NPm (w) ⊆ {x0, xm}. The following claim can410

be proved by the argument similar to the Proof of Claim 1.411

Claim 2 (i) G[V (G) − V (Pm)] is complete.412

(ii) G[V (Pm) − {x0, xm}] is complete.413

Since κ(G) ≥ 2 and δ(G) ≥ 3, ∃w,w′ ∈ V (G) − V (Pm) such that wx0 ∈ E(G)414

and w′xm ∈ E(G). By Claim 2(i), if |V (G) − V (Pm)| ≥ m + 1, then G − V (Pm) is415

a (w,w′)-path P of length m. So x0 Pxm is an (x, y)-path of length m + 2, contrary416

to (12). Hence |V (G) − V (Pm)| ≤ m. By Claim 2(ii), this class of graphs is depicted417

in Fig. 3.418

Case 3 ∃w,w′ ∈ V (G) − V (Pm) such that wxi ∈ E(G) and w′x j ∈ E(G) where419

xi , x j are inner vertices and w �= w′. Since xi , x j are both inner vertices, by (13), one420

of {w,w′} has only one neighbor in Pm . Without loss of generality we assume that421

NPm (w) = {xi } with 1 ≤ i ≤ m − 1. (14)422

Claim 3 xi−1xi+k ∈ E(G) for each k with 0 ≤ k ≤ m − i and xi+1xi−k ∈ E(G) for423

each k with 0 ≤ k ≤ i .424

Proof of Claim 3 Clearly xi−1xi ∈ E(G) and xi+1xi ∈ E(G). First we prove that425

xi−1xi+1 ∈ E(G). If xi−1xi+1 /∈ E(G), then d(xi−1, xi+1) = 2. By Lemma 2.3,426

NG−Pm (w) ∩ (NG−Pm (xi−1) ∪ NG−Pm (xi+1)) = ∅. Together with (14), we have427

|NG(xi−1) ∪ NG(xi+1)| ≤ |V (G)| − |NG[w] − {xi }| ≤ n − δ(G), contrary to (1).428

We prove xi−1xi+k ∈ E(G) for 2 ≤ k ≤ m − i by induction. Assume that429

xi−1xi+k−1 ∈ E(G). If xi−1xi+k /∈ E(G), then d(xi−1, xi+k) = 2. If NG−Pm (w) ∩430

NG−Pm (xi+k) �= ∅, let y1 ∈ NG−Pm (w) ∩ NG−Pm (xi+k). Then x0 · · · xi−1xi+k−1431

xi+k−2 · · · xiwy1 xi+k xi+k+1 · · · xm is an (x, y)-path of length m +2, contrary to (12).432

So NG−Pm (w)∩ NG−Pm (xi+k) = ∅. By Lemma 2.3, NG−Pm (w)∩ NG−Pm (xi−1) = ∅.433

Together with (14), we have |N (xi−1) ∪ N (xi+k)| ≤ |V (G)| − |NG[w] − {xi }| ≤434

n − δ(G), contrary to (1).435

By symmetry, xi+1xi−k ∈ E(G) for each k with 0 ≤ k ≤ i . ⊓⊔436

Let G1, . . . , G t be components of G[V (G) − V (Pm)] and w ∈ V (G1). Since437

κ(G) ≥ 2 and NPm (w) = {xi }, V (G1) − {w} �= ∅ and NPm−xi
(G1) �= ∅. Pick438

v ∈ V (G1) − {w} such that439

(a) NPm−xi
(v) �= ∅;440

(b) subject to (a), dG1(w, v) is shortest;441

(c) subject to (a) and (b), choose xk ∈ NPm−xi
(v) such that |k − i | is as small as442

possible.443
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K. Zhao

By symmetry we may assume that k < i . Then k+1 < i +1 ≤ m. Let ww1w2 · · · v444

be a shortest (w, v)-path in G1. If dG1(w, v) = 1, then wv ∈ E(G). By Claim 3,445

xi+1xk+1 ∈ E(G). Then x0x1 · · · xkvwxi xi−1 · · · xk+1 xi+1xi+2 · · · xm is an (x, y)-446

path of length m + 2, contrary to (12). So dG1(w, v) ≥ 2.447

If dG1(w, v) ≥ 3, then dG(w2, w) = 2. We show that NG−Pm (xi+1)∩(NG−Pm (w)∪448

NG−Pm (w2)) = ∅. Let y ∈ NG−Pm (xi+1). By Lemma 2.3, yw /∈ E(G). If yw2 ∈449

E(G) and d(w, v) ≥ 4, then dG1(w, y) = 3, contrary to (b); if yw2 ∈ E(G) and450

dG1(w, v) = 3, then it is contrary to (c) when k < i − 1, and x0x1 · · · xkvw2 yxi+1451

xi+2 · · · xm , when k = i − 1, is an (x, y)-path of length m + 2, contrary to (12).452

By (14) and (b), we have NPm (w) ∪ NPm (w2) = {xi }. So |NG(w) ∪ NG(w2)| ≤453

|V (G)| − |NG[xi+1] − {xi }| ≤ n − δ(G), contrary to (1). Next we assume that454

dG1(w, v) = 2.455

Subcase 3.1 k < i − 1.456

By Claim 3 xk+2xi+1 ∈ E(G). Since dG1(w, v) = 2, then x0x1 · · · xkvw1 wxi xi−1457

· · · xk+2 xi+1 · · · xm is an (x, y)-path of length m + 2, contrary to (12).458

Subcase 3.2 k = i − 1.459

Fact 1 NPm (v) ⊆ {xi−1, xi , xi+1}.460

Suppose by way of contradiction that ∃xl ∈ V (Pm) − {xi−1, xi , xi+1} such that461

vxl ∈ E(G). By Claim 3 xl+2xi+1 ∈ E(G) and xi−1xl−2 ∈ E(G). Then x0x1 · · ·462

xlvw1wxi xi−1 xi−2 · · · xl+2xi+1xi+2 · · · xm when l ≤ i − 2 or x0x1 · · · xi−1 xl−2xl−3463

· · · xiww1vxl xl+1 · · · xm when l ≥ i + 2 is an (x, y)-path of length m + 2, contrary464

to (12).465

Fact 2 xi+2 ∈ V (Pm).466

Since m ≥ 3, either xi−2 ∈ V (Pm) or xi+2 ∈ V (Pm). If xi−2 ∈ V (Pm), then467

NG−Pm (xi−2)∩NG−Pm (w) = ∅ by (b) and NG−Pm (xi−2)∩NG−Pm (v) = ∅ by Lemma468

2.3. So by (14), NG−Pm (xi−2)∩ (NG−Pm (w)∪ NG−Pm (v)) = ∅. Together with Fact 1,469

we have |N (w)∪ N (v)| ≤ |V (G)|−|N [xi−2]−{xi−1, xi , xi+1}∪{w, v}| ≤ n−δ(G),470

contrary to (1).471

Fact 3 vxi+1 /∈ E(G).472

If vxi+1 ∈ E(G), then NG−Pm (xi+2)∩ NG−Pm (w) = ∅ by (b) and NG−Pm (xi+2)∩473

NG−Pm (v) = ∅ by Lemma 2.3. By (14), NG−Pm (xi+2)∩(NG−Pm (w)∪ NG−Pm (v)) =474

∅. Together with Fact 1, we have |N (w) ∪ N (v)| ≤ |V (G)| − |N [xi+2] − {xi−1, xi ,475

xi+1} ∪ {w, v}| ≤ n − δ(G), contrary to (1).476

Fact 4 There exists y1 ∈ NG−Pm (xi+1) such that y1v ∈ E(G).477

By Lemma 2.3, for any y′ ∈ NG−Pm (xi+1), y′w /∈ E(G). If for any y′ ∈ NG−Pm478

(xi+1), y′v /∈ E(G), then together with Facts 1 and 3 we have |NG(v) ∪ NG(w)| ≤479

|V (G)| − |NG[xi+1] − {xi−1, xi } ∪ {w}| ≤ n − δ(G), contrary to (1). So ∃y1 ∈480

NG−Pm (xi+1) such that y1v ∈ E(G).481
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Pan-connectedness of graphs with large neighborhood unions

Fact 5 vxi /∈ E(G).482

If vxi ∈ E(G), by Fact 4, x0x1 · · · xi−1xivy1xi+1xi+2 · · · xm is an (x, y)-path of483

length m + 2, contrary to (12).484

Fact 6 xi xi+2 ∈ E(G).485

If xi xi+2 /∈ E(G), then d(xi , xi+2) = 2. Let y2 ∈ NG−Pm (v). By Lemma 2.3,486

y2xi /∈ E(G). By Claim 3 xi−1xi+1 ∈ E(G) and by Fact 4, if y2xi+2 ∈ E(G), then487

x0x1 · · · xi−1xi+1 y1 vy2xi+2 · · · xm is an (x, y)-path of length m +2, contrary to (12).488

Then NG−Pm (v) ∩ (NG−Pm (xi ) ∪ NG−Pm (xi+2)) = ∅. Together with Facts 1, 3 and489

5, we have |NG(xi+2) ∪ NG(xi )| ≤ |V (G)| − |NG(v) − {xi−1} ∪ {xi }| ≤ n − δ(G),490

contrary to (1).491

By Fact 6, x0 · · · xi−1vw1wxi xi+2xi+3 · · · xm is an (x, y)-path of length m + 2,492

contrary to (12). So we excluded both subcases.493

Subcase 3.1 and 3.2 can be excluded similarly when k > i . ⊓⊔494

Proof of Theorem 1.4 By Theorem 3.1, 4.4 and 4.5, either G ∈ {G1, G2, G3, G4} or495

G is [4, n]-pan-connected. ⊓⊔496

Proof of Theorem 1.3 By the structure of G2 and G4, for any x, y ∈ V (G4), G2, G4497

both have (x, y)-paths of length 5 and 6. By Theorem 4.5, G2 and G4 are both [5, n]-498

pan-connected. Since each graph in {G1, G3} has a 2-cut, if κ(G) ≥ 3, G is [5, n]-499

pan-connected. ⊓⊔500
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