Dear Author,
Here are the proofs of your article.

- You can submit your corrections online or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Please return your proof together with the permission to publish confirmation.
- Remember to note the journal title, article number, and your name when sending your response via e-mail, fax or regular mail.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/ corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within 48 hours, we will send you a reminder.

Please note

Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: www.springerlink.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us, if you would like to have these documents returned.

The printed version will follow in a forthcoming issue.

Fax to: +448706221325 (UK) or +448707628807 (UK)
To: Springer Correction Team
6\&7, 5th Street, Radhakrishnan Salai, Chennai, Tamil Nadu, India - 600004
Re: Monatshefte für Mathematik DOI:10.1007/s00605-008-0013-y
Pan-connectedness of graphs with large neighborhood unions
Authors: Kewen Zhao

Permission to publish

I have checked the proofs of my article and

- I have no corrections. The article is ready to be published without changes.
- I have a few corrections. I am enclosing the following pages:
- I have made many corrections. Enclosed is the complete article.

Date / signature

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Pan-connectedness of graphs with large neighborhood unions
Article Sub-Title	
Article CopyRight - Year	Springer-Verlag 2008 (This will be the copyright line in the final PDF)
Journal Name	Monatshefte für Mathematik
Corresponding Author	Family Name Zhao
	Particle
	Given Name Kewen
	Suffix
	Division Department of Mathematics
	Organization Qiongzhou University
	Address Wuzhishan City, Hainan, People's Republic of China
	Email kewen.zhao@yahoo.com.cn
Schedule	Received 10 February 2007
	Revised
	Accepted 18 March 2008
Abstract	Let G be a simple graph with n vertices. For any $v \in V(G)$, let $N(v)=\{u \in V(G): u v \in E(G)\}, N C(G)=\min$ $\{\|N(u) \cup N(v)\|: u, v \in V(G)$ and $u v \notin E(G)\}$, and $N C_{2}(G)=\min \{\|N(u) \cup N(v)\|: u, v \in V(G)$ and u and v has distance 2 in $E(G)\}$. Let $l \geq 1$ be an integer. A graph G on $n \geq l$ vertices is $[l, n]$-pan-connected if for any $u, v \in V(G)$, and any integer m with $l \leq m \leq n, G$ has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263-274, 1998) proved that for a three-connected graph on $n \geq 7$ vertices, if $N C(G) \geq n$ $-\delta(G)+1$, then G is [6, n]-pan-connected. They conjectured that such graphs should be [$5, n]$-pan-connected. In this paper, we prove that for a three-connected graph on $n \geq 7$ vertices, if $N C_{2}(G) \geq n-\delta(G)+1$, then G is [5,n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as $N C_{2}(G) \geq N C(G)$. Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with $N C_{2}(G) \geq n-\delta(G)+1$ which are not $[4, n]$-pan-connected.
Keywords (separated by '-')	Pan-connected graphs - Neighborhood unions
Mathematics Subject Classification (2000) (separated by '--')	05C38
Footnote Information	

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details required	Author's response
1.	Figures 1.1, 1.2, 1.3 and 1.4 have been renumbered as 1,2,3 and 4. Please check and confirm.	
2.	Please check the author name	

Pan-connectedness of graphs with large neighborhood unions

Kewen Zhao

Received: 10 February 2007 / Accepted: 18 March 2008
© Springer-Verlag 2008

Abstract

Let G be a simple graph with n vertices. For any $v \in V(G)$, let $N(v)=$ $\{u \in V(G): u v \in E(G)\}, N C(G)=\min \{|N(u) \cup N(v)|: u, v \in V(G)$ and $u v \notin E(G)\}$, and $N C_{2}(G)=\min \{|N(u) \cup N(v)|: u, v \in V(G)$ and u and v has distance 2 in $E(G)\}$. Let $l \geq 1$ be an integer. A graph G on $n \geq l$ vertices is $[l, n]$-panconnected if for any $u, v \in V(G)$, and any integer m with $l \leq m \leq n, G$ has a (u, v) path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263-274, 1998) proved that for a three-connected graph on $n \geq 7$ vertices, if $N C(G) \geq n-\delta(G)+1$, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5,n]-pan-connected. In this paper, we prove that for a three-connected graph on $n \geq 7$ vertices, if $N C_{2}(G) \geq n-\delta(G)+1$, then G is [5,n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as $N C_{2}(G) \geq N C(G)$. Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with $N C_{2}(G) \geq n-\delta(G)+1$ which are not [4, n]-pan-connected.

Keywords Pan-connected graphs Neighborhood unions
Mathematics Subject Classification (2000) 05C38

1 Introduction

We consider finite, undirected simple graphs in this note. Undefined notations and terminology will follow those in [1]. Let G be a graph. As in [1], $\kappa(G)$ and $\delta(G)$

[^0]denote the connectivity and the minimum degree of G, respectively. If H is a subgraph of G and $v \in V(G)$, then the neighborhood of v in H, is defined as $N_{H}(v)=$ $\{u \in V(H): u v \in E(G)\}$. We further denote $N_{G}[v]=N_{G}(v) \cup\{v\}$. A path $x_{0} x_{1} \cdots x_{m}$ is also referred to as an $\left(x_{0}, x_{m}\right)$-path of length m. For $u, v \in V(G)$, the distance between u and v in G, denoted $d_{G}(u, v)$, is the length of a shortest (u, v) path. The set $N_{G}(v)$ is sometimes denoted as $N(v)$ and $d_{G}(u, v)$ as $d(u, v)$, when G is understood in the context. Let $P=(u, v)$ denote a path in the direction from u to v in G and $x \in V(P)$. We denote by x^{+}its successor if $x \neq v$ and x^{-}its predecessor if $x \neq u$. Let $w \in V(G)$ and $N_{P}^{+}(w)=\left\{w^{+}: w \in V(P)-\{v\}\right\}$ and $N_{P}^{-}(w)=\left\{w^{-}: w \in V(P)-\{u\}\right\}$. Suppose that $T=x_{j} x_{j+1} \cdots x_{j+k}$ is a path. If $x_{1}, \ldots, x_{j-1}, x_{j+k+1}, \ldots, x_{j+k+t} \in V(G)-V(T)$, and if $x_{1} \cdots x_{j-1} x_{j}$ and $x_{j+k} \cdots x_{j+k+t}$ are paths of G, then $x_{1} \cdots x_{j-1} x_{j} T x_{j+k+1} \cdots x_{j+k+t}$ represent the path $x_{1} \cdots x_{j+k+t}$ in G.

For an integer $l \geq 1$, if for any $u, v \in V(G)$ and any integer m with $l \leq m \leq n$, G has a (u, v)-path of length m, then G is $[l, n]$-pan-connected. Define $N C(G)=$ $\min \{|N(u) \cup N(v)|: u, v \in V(G)$ and $u v \notin E(G)\}$. The sizes of the neighborhood unions have been used to study hamiltonian graphs and pan-connected graphs. The following theorems have been obtained.

Theorem 1.1 (Faudree et al. [2]) Let G be a graph with $|V(G)|=n$ and $\kappa(G) \geq 2$. If $N C(G) \geq n-\delta(G)$, then G is hamiltonian.

Theorem 1.2 (Wei and Zhu [3]) Let G be a graph with $|V(G)|=n \geq 7$ and $\kappa(G) \geq$ 3. If $N C(G) \geq n-\delta(G)+1$, then G is $[6, n]$-pan-connected.

In [3], Wei and Zhu conjectured that for a graph G with $|V(G)|=n \geq 7$ and $\kappa(G) \geq 3$, if $N C(G) \geq n-\delta(G)+1$, then G is [5,n]-connected. It is proved in this paper.

Theorem 1.3 Let G be a graph with $|V(G)|=n \geq 7$ and $\kappa(G) \geq 3$. If $N C(G) \geq$ $n-\delta(G)+1$, then G is $[5, n]$-pan-connected.

In fact, we prove a stronger theorem for two-connected graphs in which we characterize the class of all graphs which are not $[4, n]$-pan-connected. Define $N C_{2}(G)=$ $\min \left\{|N(u) \cup N(v)|: u, v \in V(G)\right.$ and $\left.d_{G}(u, v)=2\right\}$. Clearly, $N C_{2}(G) \geq N C(G)$.

Theorem 1.4 Let G be a 2-connected graph with $|V(G)|=n \geq 7$. If $N C_{2}(G) \geq$ $n-\delta(G)+1$, then G is $[4, n]$-pan-connected if and only if $G \notin\left\{G_{1}, G_{2}, G_{3}\right\}$ (as in Figs. 1, 2, 3).

In Fig. $1, K_{t}(t \geq 3)$ is a complete graph, $\left|N_{K_{t}}\left(y_{0}\right)\right| \geq 1,\left|N_{K_{t}}\left(x_{1}\right)\right| \geq 1$; if $y_{0} x_{1} \notin E(G)$, then for any $w \in V\left(K_{t}\right)$, exactly one of $\left\{w y_{0}, w x_{1}\right\}$ is in $E(G)$; if $y_{0} x_{1} \in E(G), w x_{1}$ and $w y_{0}$ are not both in $E(G)$. In Fig. 2, K_{t} is a complete graph, $N_{K_{t}}\left(u_{i}\right)=\left\{t_{i}\right\}, i=1,2, N_{K_{t}}\left(x_{1}\right) \cap\left\{t_{1}, t_{2}\right\}=\emptyset$ and x_{1} is adjacent to at least two vertices in $V\left(K_{t}\right)-\left\{t_{1}, t_{2}\right\}$. In Fig. 3, K_{t}, K_{m} are complete graphs, $d\left(x_{0}\right) \geq$ $3, d\left(x_{m}\right) \geq 3$ and $N\left(x_{0}\right) \subseteq V\left(K_{t}\right) \cup V\left(K_{m}\right), N\left(x_{0}\right) \subseteq V\left(K_{t}\right) \cup V\left(K_{m}\right)$. In Fig. 4, let $L_{1} \cong K_{4}$ be a graph with $V\left(L_{1}\right)=\left\{x_{0}, x_{1}, x_{2}, y_{0}^{1}\right\}$, and let $L_{2} \cong K_{3}^{C}$ be a graph

Fig. $1 G_{1}$

Fig. $2 G_{2}$

Fig. $3 G_{3}, 1<t \leq m$

Fig. $4 G_{1}$

with $V\left(L_{2}\right)=\left\{z_{0}, y_{1}, y_{2}\right\}$, and let $L_{3} \cong K_{n-7}$ with $n-7 \geq 2$. Assume that all the L_{i} 's are vertex disjoint. Let G_{4} be obtained from $L_{1} \cup\left(L_{2} \vee L_{3}\right)$ by adding four edges $y_{0}^{1} z_{0}, x_{1} y_{1}, z_{0} y_{1}$ and $x_{2} y_{2}$. Thus each $G_{i}(i=1,2,3)$ denotes a family of graphs. We also use G_{i} to denote a particular member in this family.

Clearly, if G is complete, Theorem 1.4 holds. Throughout the following sections of this paper we assume that G is not a complete graph. We shall prove our main theorem by induction. In Sect. 3, we deal with the induction basis and in Sect. 4, we complete the induction step.

2 Lemmas

Let $P_{m}=x_{0} x_{1} \cdots x_{m}$ be an (x, y)-path of length m in G, where $x=x_{0}$ and $y=x_{m}$ are called the ends, $x_{1}, x_{2}, \ldots, x_{m-1}$ are called the inner vertices. Throughout the following sections we assume that G is a 2-connected graph with $|V(G)|=n \geq 7$
such that

$$
\begin{equation*}
N C_{2}(G) \geq|V(G)|-\delta(G)+1=n-\delta+1 . \tag{1}
\end{equation*}
$$

If $\delta(G)=2$, then $N C_{2}(G) \geq n-1$. Since G is not complete, $\exists u, v \in V(G)$ such that $d(u, v)=2$. Clearly $u, v \notin N(u) \cup N(v)$ and it follows that $|N(u) \cup N(v)| \leq$ $|V(G)-\{u, v\}| \leq n-2$, a contradiction. So

$$
\begin{equation*}
\delta(G) \geq 3 \tag{2}
\end{equation*}
$$

Lemma 2.1 If $\delta(G)=3$ and $a, b \in V(G)$ with $d(a, b)=2$, then for any $x \in$ $V(G)-\{a, b\}, x \in N(a) \cup N(b)$.

Proof If $\exists x \in V(G)-\{a, b\}$ such that $x \notin N(a) \cup N(b)$, then $N C_{2} \leq|N(a) \cup N(b)| \leq$ $|V(G)|-|\{x\}|-|\{a, b\}| \leq n-3=n-\delta$, contrary to (1).

Lemma 2.2 Let $x, y \in V(G)$ and $P_{m}=x_{0} x_{1} \cdots x_{m}$ be an (x, y)-path of length m with $x=x_{0}$ and $y=x_{m}$. Then each of following holds.
(i) If P_{m} is a shortest (x, y)-path, then $m \leq 4$;
(ii) If P_{m} is a shortest (x, y)-path with $d_{G}(x, y) \geq 2$, then G also has an (x, y)-path of length $m+1$.
(iii) If $d_{G}(x, y)=1$ and P_{m} is a shortest (x, y)-path in $G-x y$, then $m \leq 4$;
(iv) If $d_{G}(x, y)=1$ and P_{m} is a shortest (x, y)-path in $G-x y$ with $m \geq 3$, then $G-x y$ also has an (x, y)-path of length $m+1$ and so does G.

Proof (i) By way of contradiction we assume that $m \geq 5$. Since P_{m} is a shortest (x, y)-path in G with $m \geq 5, d\left(x_{0}, x_{2}\right)=2$ and $N_{P_{m}}\left(x_{m}\right)=\left\{x_{m-1}\right\}, x_{m-1} x_{0}$, $x_{m-1} x_{2} \notin E(G)$. If $N_{G-V\left(P_{m}\right)}\left(x_{m}\right) \cap\left(N_{G}\left(x_{0}\right) \cup N_{G}\left(x_{2}\right)\right)=\emptyset$, then $\mid N_{G}\left(x_{0}\right) \cup$ $N_{G}\left(x_{2}\right)\left|\leq|V(G)|-\left|N_{G-V\left(P_{m}\right)}\left(x_{m}\right) \cup\left\{x_{m-1}\right\}\right|=|V(G)|-\left|N_{G}\left(x_{m}\right)\right|=\right.$ $n-\delta(G)$, a contradiction. So $\exists u \in N_{G-V\left(P_{m}\right)}\left(x_{m}\right)$ such that $u \in N\left(x_{0}\right) \cup N\left(x_{2}\right)$. Then either $x_{0} u x_{m}$ is an (x, y)-path of length 2 or $x_{0} x_{1} x_{2} u x_{m}$ is an (x, y)-path of length 4 in G, which contradicts that P_{m} is a shortest (x, y)-path with $m \geq 5$.
(ii) Since $d(x, y) \geq 2$ and P_{m} is a shortest (x, y)-path, $d\left(x_{0}, x_{2}\right)=2$ and $N_{P_{m}}\left(x_{1}\right)=$ $\left\{x_{0}, x_{2}\right\}$. Then $\exists u \in N\left(x_{1}\right)-\left\{x_{0}, x_{2}\right\}$ such that $u \in N\left(x_{0}\right) \cup N\left(x_{2}\right)$ otherwise $\left|N\left(x_{0}\right) \cup N\left(x_{2}\right)\right| \leq|V(G)|-\left|N\left(x_{1}\right)\right| \leq n-\delta(G)$, a contradiction. Then $x_{0} u x_{1} x_{2} \cdots x_{m}$ or $x_{0} x_{1} u x_{2} x_{3} \cdots x_{m}$ is an (x, y)-path of length $m+1$.
(iii) By way of contradiction we assume that $m \geq 5$. Since P_{m} is a shortest (x, y) path in $G-x y$ with $m \geq 5, d\left(x_{0}, x_{2}\right)=2$ and $N_{P_{m}}\left(x_{m}\right)=\left\{x_{m-1}, x_{0}\right\}$, $x_{m-1} x_{0}, x_{m-1} x_{2} \notin E(G)$. Then $\exists u \in N_{G-P_{m}}\left(x_{m}\right)$ such that $u \in N\left(x_{0}\right) \cup N\left(x_{2}\right)$ otherwise $\left|N\left(x_{0}\right) \cup N\left(x_{2}\right)\right| \leq|V(G)|-\left|N_{G-P_{m}}\left(x_{m}\right) \cup\left\{x_{0}, x_{m-1}\right\}\right|=n-$ $\left|N\left(x_{m}\right)\right| \leq n-\delta(G)$, a contradiction. So $x_{0} u x_{m}$ is an (x, y)-path of length 2 or $x_{0} x_{1} x_{2} u x_{m}$ is an (x, y)-path of length 4 in $G-x y$, contrary to the fact that $x_{0} x_{1} \cdots x_{m}$ is a shortest (x, y)-path in $G-x y$ with $m \geq 5$.
(iv) Since $m \geq 3$ and P_{m} is a shortest (x, y)-path in $G-x y, d_{G}\left(x_{0}, x_{2}\right)=2$ and $N_{G}\left(x_{1}\right) \cap V\left(P_{m}\right)=\left\{x_{0}, x_{2}\right\}$. Then $\exists u \in N\left(x_{1}\right)-\left\{x_{0}, x_{2}\right\}$ such that
$u \in N\left(x_{0}\right) \cup N\left(x_{2}\right)$ otherwise $\left|N\left(x_{0}\right) \cup N\left(x_{2}\right)\right| \leq|V(G)|-\left|N\left(x_{1}\right)\right| \leq n-\delta(G)$, a contradiction. Then $x_{0} u x_{1} x_{2} \cdots x_{m}$ or $x_{0} x_{1} u x_{2} x_{3} \cdots x_{m}$ is an (x, y)-path of length $m+1$ in $G-x y$.

Lemma 2.3 Let $x, y \in V(G), P_{m}=x_{0} x_{1} \cdots x_{m}$ be an (x, y)-path of length m and and for some i with $0 \leq i<m, \exists u \in N_{G-P_{m}}\left(x_{i}\right), v \in N_{G-P_{m}}\left(x_{i+1}\right)$ with $u \neq v$ for $x_{i}, x_{i+1} \in V\left(P_{m}\right)$. If G does not have an (x, y)-path of length $m+2$, then $u v \notin E(G)$.

Proof If $u v \in E(G)$, then $x_{0} x_{1} \cdots x_{i} u v x_{i+1} \cdots x_{m}$ is an (x, y)-path of length $m+2$, a contradiction.

3 Base case

Theorem 3.1 For any pair of distinct vertices $x, y \in V(G)$, one of the following holds.
(i) $G \in\left\{G_{1}\right\}$ (see Fig. 1) and G has (x, y)-paths of length of 5 and 6 ;
(ii) $G \notin\left\{G_{1}\right\}$ and $\exists k \in\{2,3,4\}$ such that G has (x, y)-paths of length k and $k+1$.

Proof By Lemma 2.2(i), \exists a shortest (x, y)-path of length ≤ 4. If $d_{G}(x, y)=2,3$ or 4, by Lemma 2.2(ii), G has an (x, y)-path of length $3,4,5$ respectively, done. Next we assume that $d_{G}(x, y)=1$. Let P_{m} be a shortest (x, y)-path in $G-x y$. By Lemma 2.2(iii) and (iv) if $d_{G-x y}(x, y)=3$ or 4 , then G has an (x, y)-path of length 4,5 respectively, done. So we assume that $d_{G-x y}(x, y)=2$. Let $x_{0} x_{1} x_{2}=P_{2}$ be a shortest (x, y)-path of length 2 in $G-x y$. Since $d_{G}(x, y)=1, x_{0} x_{2} \in E(G)$. By way of contradiction, we assume that

$$
\begin{equation*}
G \text { does not have an }(x, y) \text {-path of length } 3 \text {. } \tag{3}
\end{equation*}
$$

Since $\delta(G) \geq 3, N_{G-P_{2}}\left(x_{0}\right) \neq \emptyset$ and $N_{G-P_{2}}\left(x_{2}\right) \neq \emptyset$.
Case $1 \exists u \in N_{G-P_{2}}\left(x_{0}\right)$ but $u \notin N_{G-P_{2}}\left(x_{2}\right)$. Since $x_{0} x_{2} \in E(G), d_{G}\left(u, x_{2}\right)=2$. By (3) $x_{1} u \notin E(G)$. Then $\exists v \in N\left(x_{1}\right)-\left\{x_{0}, x_{2}\right\}$ such that $u \neq v \in N(u) \cup N\left(x_{2}\right)$ otherwise $\left|N(u) \cup N\left(x_{2}\right)\right| \leq|V(G)|-\left|N\left(x_{1}\right)-\left\{x_{0}\right\} \cup\{u\}\right| \leq n-\delta(G)$, a contradiction. By (3) $v x_{2} \notin E(G)$. So $v u \in E(G)$ and $x_{0} u v x_{1} x_{2}$ is an (x, y)-path of length 4 . Since $u x_{1} \notin E(G), u x_{2} \notin E(G)$ and $\delta(G) \geq 3, N_{G-P_{2}-v}(u) \neq \emptyset$. Since $d\left(v, x_{2}\right)=2$ and $u x_{2} \notin E(G)$, then $\exists u_{1} \in N_{G}(u)-\left\{x_{0}, v, x_{2}\right\}$ such that $u_{1} \in N(v) \cup N\left(x_{2}\right)$ otherwise $\left|N(v) \cup N\left(x_{2}\right)\right| \leq|V(G)|-\left|N(u)-\left\{x_{0}\right\} \cup\left\{x_{2}\right\}\right| \leq n-\delta(G)$, a contradiction. If $u_{1} x_{2} \in E(G), x_{0} u u_{1} x_{2}$ is an (x, y)-path of length 3, contrary to (3). If $u_{1} v \in E(G)$, $x_{0} u u_{1} v x_{1} x_{2}$ is an (x, y)-path of length 5 and so G has an (x, y)-path of length 4 and 5, done.

Case $2 N_{G-P_{2}}\left(x_{0}\right) \subseteq N\left(x_{2}\right)$. By symmetry, $N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right)$.
If $N_{G-P_{2}}\left(x_{0}\right)$ has two vertices (say $\left.z_{1}, z_{2}\right)$ adjacent to each other, then by $N_{G-P_{2}}$ $\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right), x_{0} z_{1} z_{2} x_{2}$ is an $\left(x_{0}, x_{2}\right)$-path of length 3, contrary to (3). Thus
$N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right)$ is an independent set.

For any $v \in N_{G-P_{2}}\left(x_{1}\right)$, if $v \in N_{G}\left(x_{0}\right) \cup N_{G}\left(x_{2}\right)$, then $x_{0} v x_{1} x_{2}$ or $x_{0} x_{1} v x_{2}$ is an (x_{0}, x_{2})-path of length 3 , contrary to (3). So

$$
\begin{equation*}
N_{G-P_{2}}\left(x_{1}\right) \cap\left(N_{G-P_{2}}\left(x_{0}\right) \cup N_{G-P_{2}}\left(x_{2}\right)\right)=\emptyset . \tag{5}
\end{equation*}
$$

Subcase $2.1 \delta(G) \geq 4$. Then $\left|N_{G-P_{2}}\left(x_{0}\right)\right| \geq 2$. By $N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right)$, let $u_{1}, u_{2} \in N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right)$. By (5), $u_{1}, u_{2} \notin N_{G-P_{2}}\left(x_{1}\right)$. By (4), $d\left(u_{1}, u_{2}\right)=$ 2. If $N_{G-P_{2}}\left(x_{1}\right) \cap\left(N_{G-P_{2}}\left(u_{1}\right) \cup N_{G-P_{2}}\left(u_{2}\right)\right)=\emptyset$, then $\left|N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{2}\right)\right| \leq$ $|V(G)|-\left|N\left[x_{1}\right]-\left\{x_{0}, x_{2}\right\} \cup\left\{u_{1}\right\}\right| \leq n-\delta$, a contradiction. So $\exists v_{1} \in N_{G-P_{2}}\left(x_{1}\right)$ such that $v_{1} u_{1} \in E(G)$ or $v_{1} u_{2} \in E(G)$. Without loss of generality we assume that $v_{1} u_{1} \in$ $E(G)$. Then $x_{0} u_{1} v_{1} x_{1} x_{2}$ is an (x, y)-path of length 4. By (3) $v_{1} x_{0} \notin E(G), v_{1} x_{2} \notin$ $E(G)$. As $\delta(G) \geq 4, N_{G}\left(v_{1}\right)-V\left(P_{2}\right)-\left\{u_{1}, u_{2}\right\} \neq \emptyset$. Since $d\left(u_{1}, u_{2}\right)=2$, $\exists v_{1}^{\prime} \in N_{G}\left(v_{1}\right)-\left\{x_{1}, u_{1}, u_{2}\right\}$ such that either $v_{1}^{\prime} u_{1} \in E(G)$ or $v_{1}^{\prime} u_{2} \in E(G)$ otherwise $\left|N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{2}\right)\right| \leq|V(G)|-\left|N\left(v_{1}\right)\right| \leq n-\delta(G)$, a contradiction. Then $x_{0} u_{1} v_{1}^{\prime} v_{1} x_{1} x_{2}$ or $x_{0} u_{2} v_{1}^{\prime} v_{1} x_{1} x_{2}$ is an (x, y)-path of length 5 , respectively. Hence G has an (x, y)-path of length 4 and 5 , done.

Subcase $2.2 \delta(G)=3$. If $\left|N_{G-P_{2}}\left(x_{0}\right)\right| \geq 2$, let $u_{1}, u_{2} \in N_{G-P_{2}}\left(x_{0}\right)$. By (4), $d\left(u_{1}, u_{2}\right)=2$. By Lemma 2.1, $x_{1} \in N\left(u_{1}\right) \cup N\left(u_{2}\right)$, then $x_{0} u_{1} x_{1} x_{2}$ or $x_{0} u_{2} x_{1} x_{2}$ is an (x, y)-path of length 3 , contrary to (3). So $\left|N_{G-P_{2}}\left(x_{0}\right)\right|=\left|N_{G-P_{2}}\left(x_{2}\right)\right|=1$. We assume that

$$
\begin{equation*}
N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right)=\left\{y_{0}\right\} . \tag{6}
\end{equation*}
$$

Next we show that $V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}$ induces a complete graph. Let G_{1}, \ldots, G_{t} be components of $G-V\left(P_{2}\right)-\left\{y_{0}\right\}$. If $\exists u_{1}, u_{2} \in V\left(G_{i}\right)$ such that $d\left(u_{1}, u_{2}\right)=2$, then by Lemma $2.1 x_{0} \in N\left(u_{1}\right) \cup N\left(u_{2}\right)$, contrary to (6). So each component G_{i} is complete. If $t \geq 2$, since $\kappa(G) \geq 2$, by (6) each component has at least two vertices adjacent to x_{1} and to y_{0} respectiyely. Then $\exists w_{1} \in V\left(G_{i}\right), w_{2} \in V\left(G_{j}\right)$ such that $w_{1} y_{0} \in E(G), w_{2} y_{0} \in E(G)$ and so $d\left(w_{1}, w_{2}\right)=2$. By Lemma 2.1 $x_{0} \in N\left(w_{1}\right) \cup N\left(w_{2}\right)$, contrary to (6). Hence $V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}$ induces a complete graph, denoted by $G\left[V\left(K_{t}\right)\right]$.

Since $n \geq 7,\left|V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}\right|=\left|V\left(K_{t}\right)\right| \geq 3$. Since $\kappa(G) \geq 2$, by Menger's Theorem, $\exists w_{1}, u_{2} \in V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}$ such that $w_{1} x_{1} \in E(G), w_{2} y_{0} \in E(G)$. Then $x_{0} y_{0} w_{2} w_{1} x_{1} x_{2}$ is an (x, y)-path of length 5. If $\exists u^{\prime} \in V\left(K_{t}\right)$ with $u^{\prime} y_{0}, u^{\prime} x_{1} \in$ $E(G)$, then $x_{0} y_{0} u^{\prime} x_{1} x_{2}$ is an (x, y)-path of length 4. Hence G has an (x, y)-path of length 4 and 5 , done. So for any $u^{\prime} \in V\left(K_{t}\right), u^{\prime}$ cannot be adjacent to both y_{0} and x_{1}. By (3), $y_{0} x_{1} \notin E(G)$ and $d\left(y_{0}, x_{1}\right)=2$. By Lemma 2.1, for any $z \in V\left(K_{t}\right), z \in$ $N\left(y_{0}\right) \cup N\left(x_{1}\right)$. Therefore this is the class G_{3} of graphs depicted as in Fig. 1. Let $u_{3} \in V\left(K_{t}\right)-\left\{w_{1}, w_{2}\right\}$. Then $x_{0} y_{0} w_{2} w_{1} x_{1} x_{2}$ and $x_{0} y_{0} w_{2} u_{3} w_{1} x_{1} x_{2}$ are (x, y)-path of length 5 and 6 , respectively.

4 Proof of Theorems 1.3 and 1.4 (Induction)

Lemma 4.1 Let P_{m} be an (x, y)-path of length m and $u \in V(G)-V\left(P_{m}\right)$ with $\left|N_{P_{m}}^{+}(u)\right| \geq 2$. If G does not have an (x, y)-path of length $m+2$, then one of the following must hold.
(i) \exists a pair $x_{i+1}, x_{j+1} \in N_{P_{m}}^{+}$(u) such that $x_{i+1} x_{j+1} \in E(G)$;
(ii) for everypair of $x_{k+1}, x_{h+1} \in N_{P_{m}}^{+}(u)($ where $k<h)$ with $\left\{x_{k+1}, x_{k+2}, \ldots, x_{h-1}\right\}$ $\cap N_{P_{m}}(u)=\emptyset, \exists r, s, t$ such that one of the following holds

$$
\left\{\begin{array}{lll}
x_{r} x_{k+1}, x_{h+1} x_{r+1} \in E(G) & : & 1 \leq r<k \\
x_{s+1} x_{k+1}, x_{h+1} x_{s} \in E(G) & : & k+1<s<h \\
x_{t} x_{k+1}, x_{h+1} x_{t+1} \in E(G) & : & h+1<t<m
\end{array}\right.
$$

Proof We assume that (i) fails to prove (ii). By contradiction, assume further that no such r, s or t can be found. Since (i) does not hold, $x_{k+1} \neq x_{h}$. And as $\left\{x_{k+1}, x_{k+2}, \ldots\right.$, $\left.x_{h-1}\right\} \cap N_{P_{m}}(u)=\emptyset, d\left(u, x_{k+1}\right)=2$. By Lemma 2.3, $N_{G-P_{m}}\left(x_{h+1}\right) \cap N_{G-P_{m}}(u)=\emptyset$. If $\exists w \in N_{G-P_{m}}\left(x_{h+1}\right)$ such that $w x_{k+1} \in E(G)$, then $x_{0} \cdots x_{k} u x_{h} x_{h-1} \cdots x_{k+1}$ $w x_{h+1} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to the assumption. So $N_{G-P_{m}}\left(x_{h+1}\right) \cap N_{G-P_{m}}\left(x_{k+1}\right)=\emptyset$. Let $T_{1}=x_{0} x_{1} \cdots x_{k}, T_{2}=x_{k+1} x_{k+2} \cdots x_{h}$ and $T_{3}=x_{h+1} x_{h+2} \cdots x_{m}$. Since $\left\{x_{k+1}, x_{k+2}, \ldots, x_{h-1}\right\} \cap N_{P_{m}}(u)=\emptyset$ and (i), (ii) do not hold, for any $z \in N_{G}\left(x_{k+1}\right) \cup N_{G}(u)$,

$$
z \notin N_{T_{1}-\left\{x_{0}\right\}}^{-}\left(x_{h+1}\right) \cup N_{T_{2}-\left\{x_{h}\right\}}^{+}\left(x_{h+1}\right) \cup N_{T_{3}}^{-}\left(x_{h+1}\right) .
$$

and $N_{T_{1}-\left\{x_{0}\right\}}^{-}\left(x_{h+1}\right), N_{T_{2}-\left\{x_{h}\right\}}^{+}\left(x_{h+1}\right)$ and $N_{T_{3}}^{-}\left(x_{h+1}\right)$ are pairwise disjoint. Then $\mid N_{G}$ $\left(x_{k+1}\right) \cup N_{G}(u)\left|\leq|V(G)|-\left(\left|N_{G-P_{m}}\left(x_{h+1}\right)\right|+\mid N_{T_{1}-\left\{x_{0}\right\}}^{-}\left(x_{h+1}\right) \cup N_{T_{2}-\left\{x_{h}\right\}}^{+}\left(x_{h+1}\right) \cup\right.\right.$ $\left.N_{T_{3}}^{-}\left(x_{h+1}\right) \cup\left\{u, x_{k+1}\right\}-\left\{x_{0}, x_{h}\right\} \mid\right)=|V(G)|-\left|N_{G-P_{m}}\left(x_{h+1}\right) \cup N_{P_{m}}\left(x_{h+1}\right)\right| \leq$ $n-\delta(G)$, contrary to (1).

Corollary 4.2 Let P_{m} be an (x, y)-path of length m and $u \in V(G)-V\left(P_{m}\right)$ with $\left|N_{P_{m}}^{+}(u)\right| \geq 2$. If G does not have an (x, y)-path of length $m+2$, then G has an (x, y)-path P_{m+1} of length $m+1$ with $V\left(P_{m+1}\right)=V\left(P_{m}\right) \cup\{u\}$.

Proof If Lemma 4.1(i) holds, then $\exists x_{k+1}, x_{h+1} \in N_{P_{m}}^{+}(u)$ with $x_{k+1} x_{h+1} \in E(G)$ $(k<h<m)$. Hence $x_{0} x_{1} \cdots x_{k} u x_{h} x_{h-1} \cdots x_{k+1} x_{h+1} \cdots x_{m}$ is an (x_{0}, x_{m})-path of length $m+1$. Next we assume that Lemma 4.1(ii) holds. If $x_{r} x_{k+1}, x_{h+1} x_{r+1} \in E(G)$, then $x_{0} x_{1} \cdots x_{r} x_{k+1} x_{k+2} \cdots x_{h} u x_{k} x_{k-1} \cdots x_{r+1} x_{h+1} x_{h+2} \cdots x_{m}$ is an $\left(x_{0}, x_{m}\right)$-path of length $m+1$. If $x_{s+1} x_{k+1}, x_{h+1} x_{s} \in E(G)$, then $x_{0} x_{1} \cdots x_{k} u x_{h} x_{h-1} \cdots x_{s+1} x_{k+1}$ $x_{k+2} \cdots x_{s} x_{h+1} x_{h+2} \cdots x_{m}$ is an (x_{0}, x_{m})-path of length $m+1$. If $x_{t} x_{k+1}, x_{h+1} x_{t+1} \in$ $E(G)$, then $x_{0} x_{1} \cdots x_{k} u x_{h} x_{h-1} \cdots x_{k+1} x_{t} x_{t-1} \cdots x_{h+1} x_{t+1} x_{t+2} \cdots x_{m}$ is an $\left(x_{0}, x_{m}\right)$ path of length $m+1$.

Lemma 4.3 Let $P_{m}=x_{0} x_{1} x_{2} \cdots x_{m}$ be an (x, y)-path of length m in G. If $\exists w, w^{\prime} \in$ $V(G)-V\left(P_{m}\right)$ satisfying both of the following,
(i) both $\left|N_{P_{m}}(w)\right| \geq 2$ and $\left|N_{P_{m}}\left(w^{\prime}\right)\right| \geq 2$, and
(ii) both $N_{P_{m}}(w)-\left\{x_{0}, x_{m}\right\} \neq \emptyset$ and $N_{P_{m}}\left(w^{\prime}\right)-\left\{x_{0}, x_{m}\right\} \neq \emptyset$, then G has an (x, y)-path of length $m+2$.

Proof By way of contradiction, we assume that G does not have an (x, y)-path of length $m+2$. If $\left|N_{P_{m}}^{+}(w)\right|=\left|N_{P_{m}}^{+}\left(w^{\prime}\right)\right|=1$, then $x_{m} \in N_{P_{m}}(w), x_{m} \in N_{P_{m}}\left(w^{\prime}\right)$. Reverse the order of P_{m} to get P_{m}^{\prime}, then by (i) and (ii) $\left|N_{P_{m}^{\prime}}^{+}(w)\right| \geq 2,\left|N_{P_{m}^{\prime}}^{+}\left(w^{\prime}\right)\right| \geq 2$. So we may assume that $\left\{x_{i}, x_{j}\right\} \subseteq N_{P_{m}}(w)$ with $0 \leq i<j<m$. By Corollary 4.2, G has an $\left(x_{0}, x_{m}\right)$-path P_{m+1} with $V\left(P_{m+1}\right)=V\left(P_{m}^{\prime}\right) \cup\{w\}$.

Note that $N_{P_{m}}\left(w^{\prime}\right) \subseteq V\left(P_{m}\right) \subseteq V\left(P_{m+1}\right)$. Thus $\left|N_{P_{m+1}}\left(w^{\prime}\right)\right| \geq 2$. If $x_{m} \notin$ $N_{P_{m+1}}\left(w^{\prime}\right)$ or if $\left|N_{P_{m+1}}\left(w^{\prime}\right)\right| \geq 3$, then $\left|N_{P_{m+1}}^{+}\left(w^{\prime}\right)\right| \geq 2$, and we can apply Corollary 4.2 to P_{m+1} and w^{\prime} to find an $\left(x_{0}, x_{m+2}\right)$-path P_{m+2} with $V\left(P_{m+2}\right)=V\left(P_{m+1}\right) \cup$ $\left\{w^{\prime}\right\}$. Therefore, we may assume that $N_{P_{m+1}}\left(w^{\prime}\right)=N_{P_{m}}\left(w^{\prime}\right)=\left\{x_{l}, x_{m}\right\}$, with $0<l<m$. Reverse the order of P_{m+1} to get an $\left(x_{m+1}, x_{0}\right)$-path Q_{m+1}. Then $\left|N_{Q_{m+1}}^{+}\left(w^{\prime}\right)\right| \geq 2$, and so we can apply Corollary 4.2 to Q_{m+1} and w^{\prime} to find an $\left(x_{m+2}, x_{0}\right)$-path Q_{m+2} with $V\left(Q_{m+2}\right)=V\left(Q_{m+1}\right) \cup\left\{w^{\prime}\right\}$. Therefore, in any case, we can find an $\left(x_{0}, x_{m}\right)$-path of length $m+2$, a contradiction.

Theorem 4.4 Let $x, y \in V(G)$. If G has an (x, y)-path $P_{2}=x_{0} x_{1} x_{2}$ of length 2, then either $G \in\left\{G_{1}, G_{2}, G_{4}\right\}$ (see Figs. 1, 2, 4) or G has an (x, y)-path of length 4.

Proof By way of contradiction we assume that

$$
\begin{equation*}
G \text { does not have an }(x, y) \text {-path of length } 4 \text {. } \tag{7}
\end{equation*}
$$

Case $1 \delta(G)=3$. Then $N\left(x_{0}\right)-\left\{x_{1}, x_{2}\right\} \neq \emptyset$ and $N\left(x_{2}\right)-\left\{x_{0}, x_{1}\right\} \neq \emptyset$.
Subcase 1.1 $\left|N_{G-P_{2}}\left(x_{0}\right) \cup N_{G-P_{2}}\left(x_{2}\right)\right| \geq 2$. Then $\exists y_{0}, y_{2} \in V(G)-V\left(P_{2}\right)$ with $y_{0} \neq y_{2}$ such that $x_{0} y_{0}, x_{2} y_{2} \in E(G)$. First we assume that $y_{0} y_{2} \in E(G)$.

By Lemma 2.3 for each $i \in\{0,2\}, y_{i} x_{1} \notin E(G)$ and so $d\left(y_{i}, x_{1}\right)=2$. Then by Lemma 2.1, $N_{G}\left(y_{i}\right) \cup N_{G}\left(x_{1}\right)=V(G)-\left\{y_{i}, x_{1}\right\}$. If $\exists u \in V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$ such that $u y_{0} \in E(G)$, then by Lemma 2.3, $u x_{1} \notin E(G)$. Since $d\left(y_{2}, x_{1}\right)=2$, by Lemma $2.1 u y_{2} \in E(G)$, then $x_{0} y_{0} u y_{2} x_{2}$ is an (x, y)-path of length 4, contrary to (7). So by symmetry

$$
\begin{equation*}
\text { for any } u \in V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right), u y_{0}, u y_{2} \notin E(G) . \tag{8}
\end{equation*}
$$

Since $d\left(y_{0}, x_{1}\right)=2$, by Lemma 2.1, for any $u \in V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right), u x_{1} \in$ $E(G)$. Therefore $V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right) \subseteq N_{G}\left(x_{1}\right)$.

Since $n \geq 7,\left|V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)\right| \geq 2$. If there exist two vertices $w_{1}, w_{2} \in$ $V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$ such that $d\left(w_{1}, w_{2}\right)=2$, then by Lemma 2.1, we must have $y_{0} \in N_{G}\left(w_{1}\right) \cup N_{G}\left(w_{2}\right)$, contrary to (8). It follows that $V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$ induces a complete subgraph $K_{t} \cong K_{n-5}$, where $n-5 \geq 7-5=2$. Since G is 2-connected, x_{1} is not a cut vertex of G, and also $N_{G-P_{m}}\left(x_{1}\right) \cap\left(N_{G-P_{m}}\left(y_{0}\right) \cup\right.$ $\left.N_{G-P_{m}}\left(y_{2}\right)\right)=\emptyset$ by (8), we can find $u_{1} \in V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$ such that $u_{1} x_{0} \in E(G)$ (or respectively, $u_{1} x_{2} \in E(G)$). Since $\left|V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)\right| \geq 2$,
$\exists u_{2} \in V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}, u_{1}\right\}\right)$. Hence $x_{0} u_{1} u_{2} x_{1} x_{2}$ (or respectively, $x_{0} x_{1} u_{2} u_{1} x_{2}$) is an $\left(x_{0}, x_{2}\right)$-path of length 4 , contrary to (7).

Next we assume $y_{0} y_{2} \notin E(G)$. By (7), at most one edge in $\left\{y_{0} x_{1}, y_{2} x_{1}\right\}$ is in $E(G)$ and we assume that $y_{2} x_{1} \notin E(G)$. So $d\left(y_{2}, x_{1}\right)=2$ and by Lemma 2.1 and $y_{0} y_{2} \notin E(G), y_{0} x_{1} \in E(G)$. If $\exists u^{\prime} \in N_{G}\left(y_{0}\right)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$, then by Lemma 2.1, $u^{\prime} \in N_{G}\left(x_{1}\right) \cup N_{G}\left(y_{2}\right)$. Each case is contrary to Lemma 7. Thus

$$
\begin{equation*}
N_{G}\left(y_{0}\right) \subseteq V\left(P_{2}\right) \tag{9}
\end{equation*}
$$

Since $\delta(G)=3, y_{0} x_{2} \in E(G)$. Then $d\left(y_{0}, y_{2}\right)=2$. As $y_{0} y_{2} \notin E(G), d_{G}\left(y_{0}, y_{2}\right)=$ 2. By (9) and Lemma 2.1, $V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right) \subseteq N_{G}\left(y_{2}\right)$. Since $n \geq 7$, $\left|V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)\right| \geq 2$. Let $u_{1}, u_{2} \in V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$, if $u_{1} u_{2} \notin E(G)$, then by Lemma 2.1, $x_{1} \in N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{2}\right)$, contrary to Lemma 2.3. Hence $V(G)-\left(V\left(P_{2}\right) \cup\left\{y_{0}, y_{2}\right\}\right)$ induces a complete subgraph $K_{t} \cong K_{n-5}$ in G. Since $\kappa(G) \geq 2$ and $N_{G}\left(y_{0}\right) \subseteq V\left(P_{2}\right)$, we may assume that $u_{1} \in N_{G}\left(x_{0}\right)$ and $u_{2} \in N_{G}\left(y_{2}\right)$. It follows that $x_{0} u_{1} u_{2} y_{2} x_{2}$ is an (x_{0}, x_{2})-path of length 4 , contrary to (7). Therefore, Case 1.1 is precluded.

Subcase 1.2 $\left|N_{G-P_{2}}\left(x_{0}\right) \cup N_{G-P_{2}}\left(x_{2}\right)\right|=1$. Let $y_{0} \in N_{G-P_{2}}\left(x_{0}\right) \cup N_{G-P_{2}}\left(x_{2}\right)$.
Since $\delta(G)=3$ and $N_{G-P_{2}}\left(x_{0}\right) \cup N_{G-P_{2}}\left(x_{2}\right)=\left\{y_{0}\right\}$, we must have $x_{0} x_{2} \in E(G)$ and for any $y \in V(G)-V\left(P_{2}\right)-y_{0}, y x_{0}, y x_{2} \notin E(G)$. Then

$$
\begin{equation*}
N_{G}\left(x_{0}\right)-\left\{x_{2}\right\}=N_{G}\left(x_{2}\right)-\left\{x_{0}\right\}=\left\{x_{1}, y_{0}\right\} . \tag{10}
\end{equation*}
$$

Since $\kappa(G) \geq 2$, if $G-V\left(P_{2}\right)-\left\{y_{0}\right\}$ is not connected, then by (10) each component is adjacent to both y_{0} and x_{1}. So $\exists u$, v from two different components such that $u y_{0}, v y_{0} \in E(G)$ and thus $d(u, v)=2$. So $\left|N_{G}(u) \cup N_{G}(v)\right| \leq n-\left|\left\{x_{0}, x_{2}, u\right\}\right|=$ $n-3=n-\delta(G)$, a contradiction. Similarly we can prove that $V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}$ induces a complete subgraph K_{t} of G. If $\exists u^{\prime} \in V\left(K_{t}\right)$ with $u^{\prime} y_{0}, u^{\prime} x_{1} \in E(G)$, then $x_{0} y_{0} u^{\prime} x_{1} x_{2}$ is an (x, y)-path of length 4 , contrary to (7). So for any $u^{\prime} \in V\left(K_{t}\right)$, if $u^{\prime} y_{0} \in E(G)$, then $u^{\prime} x_{1} \notin E(G)$ and if $u^{\prime} x_{1} \in E(G)$, then $u^{\prime} y_{0} \notin E(G)$. If $y_{0} x_{1} \notin E(G)$, then $d\left(y_{0}, x_{1}\right)=2$. By Lemma 2.1, for any $w \in V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}$, exactly one of $w y_{0} \in E(G)$ and $w x_{1} \in E(G)$ holds. If $y_{0} x_{1} \in E(G)$, then for any $w \in V(G)-V\left(P_{2}\right)-\left\{y_{0}\right\}, w$ is not adjacent to both y_{0} and x_{1}. This class G_{1} of graphs is depicted in Fig. 1.

Case $2 \delta(G) \geq 4$.
Subcase $2.1\left|N_{G-P_{2}}\left(x_{0}\right) \cap N_{G-P_{2}}\left(x_{1}\right)\right| \geq 1$ or $\left|N_{G-P_{2}}\left(x_{2}\right) \cap N_{G-P_{2}}\left(x_{1}\right)\right| \geq 1$. We may assume that $y_{0}^{1} \in N_{G-P_{2}}\left(x_{0}\right) \cap N_{G-P_{2}}\left(x_{1}\right)$. Since $\delta(G) \geq 4, \exists y_{1} \in$ $N_{G-P_{2}-y_{0}^{1}}\left(x_{1}\right)$. By Lemma $2.3 y_{0}^{1} y_{1} \notin E(G)$. By $\delta(G) \geq 4, \exists z_{0} \in N_{G-P_{2}-\left\{y_{1}\right\}}\left(y_{0}^{1}\right)$. By (7), $z_{0} x_{1}, z_{0} x_{2} \notin E(G)$ and $N_{G-P_{2}-y_{0}^{1}}\left(x_{2}\right) \cap\left(N_{G-P_{2}-y_{0}^{1}}\left(z_{0}\right) \cup N_{G-P_{2}-y_{0}^{1}}\left(x_{1}\right)\right)=$ \emptyset. We have the following observations.
(A) $y_{0}^{1} x_{2} \in E(G)$ and $x_{0} x_{2} \in E(G)$. Otherwise if $y_{0}^{1} x_{2} \notin E(G)$, then $\mid N\left(z_{0}\right) \cup$ $N\left(x_{1}\right)\left|\leq|V(G)|-\left|N\left(x_{2}\right)-\left\{x_{0}\right\} \cup z_{0}\right|=n-\delta(G)\right.$, a contradiction; if $x_{0} x_{2} \notin$
$E(G)$, then $\left|N\left(z_{0}\right) \cup N\left(x_{1}\right)\right| \leq|V(G)|-\left|N\left(x_{2}\right)-\left\{y_{0}^{1}\right\} \cup z_{0}\right|=n-\delta(G)$, a contradiction.
(B) Let $y_{2} \in N_{G-P_{2}-\left\{y_{0}^{1}, y_{1}\right\}}\left(x_{2}\right)$. Then $x_{0} y_{2} \in E(G)$ and $N\left(x_{0}\right)=\left\{x_{1}, x_{2}, y_{0}^{1}, y_{2}\right\}$. So $\delta(G)=4$.

If $\exists y_{0} \in N\left(x_{0}\right)-V\left(P_{2}\right)-\left\{y_{0}^{1}, y_{1}, y_{2}\right\}$, then $y_{0} y_{0}^{1} \notin E(G)$ otherwise $x_{0} y_{0} y_{0}^{1} x_{1} x_{2}$ is an (x, y)-path of length 4 , contrary to (7). So $\left|N\left(y_{0}^{1}\right) \cup N\left(y_{0}\right)\right| \leq|V(G)|-\mid N\left(y_{2}\right)-$ $\left\{x_{0}, x_{2}\right\} \cup\left\{y_{0}^{1}, y_{1}\right\} \mid=n-\delta(G)$, contrary to (1). Since $\delta(G) \geq 4, y_{0}^{1} y_{2} \in E(G)$ and so $N\left(x_{0}\right)=\left\{x_{1}, x_{2}, y_{0}^{1}, y_{2}\right\}$.
(C) $d\left(x_{1}\right)=d\left(x_{2}\right)=4$, and so $N\left(x_{1}\right)=\left\{x_{0}, x_{2}, y_{0}^{1}, y_{1}\right\}$ and $N\left(x_{2}\right)=\left\{x_{0}, x_{1}, y_{0}^{1}, y_{2}\right\}$.

By Lemma 2.3, $N_{G-P_{2}}\left(x_{1}\right) \cap\left(N\left(y_{0}^{1}\right) \cup N\left(y_{2}\right)\right)=\emptyset$. If $\left|N\left(x_{1}\right)\right| \geq 5$, then $\mid N\left(y_{0}^{1}\right) \cup$ $N\left(y_{2}\right)\left|\leq|V(G)|-\left|N\left(x_{1}\right)-\left\{x_{0}, x_{2}\right\} \cup y_{2}\right| \leq n-4=n-\delta(G)\right.$, contrary to (1). Similarly, if $\left|N\left(x_{2}\right)\right| \geq 5,\left|N\left(y_{0}^{1}\right) \cup N\left(y_{1}\right)\right| \leq|V(G)|-\left|N\left(x_{2}\right)-\left\{x_{0}, x_{1}\right\} \cup y_{1}\right| \leq$ $n-4=n-\delta(G)$, a contradiction.
(D) $N\left(y_{0}^{1}\right)=\left\{x_{0}, x_{1}, x_{2}, z_{0}\right\}$.

If $\left|N\left(y_{0}^{1}\right)\right| \geq 5$, then $\left|N\left(x_{1}\right) \cup N\left(y_{2}\right)\right| \leq|V(G)|-\left|N\left(y_{0}^{1}\right)-\left\{x_{0}, x_{2}\right\} \cup y_{2}\right| \leq$ $n-4=n-\delta(G)$, a contradiction.
(E) $z_{0} y_{1} \in E(G)$ and $z_{0} y_{2} \notin E(G)$. So $N_{G\left[P_{2} \cup\left\{y_{0}^{1}, y_{1}, y_{2}\right\}\right]}\left(z_{0}\right)=\left\{y_{0}^{1}, y_{1}\right\}$.

By (D), if $z_{0} y_{1} \notin E(G)$, then $\left|N\left(x_{0}\right) \cup N\left(y_{1}\right)\right| \leq|V(G)|-\mid N\left(y_{0}^{1}\right)-\left\{x_{1}, x_{2}\right\} \cup$ $\left\{z_{0}, y_{1}\right\} \mid=n-4$, a contradiction. If $z_{0} y_{2} \in E(G)$, then $x_{0} y_{0}^{1} z_{0} y_{2}$ is an (x, y)-path of length 4, contrary to (7). By (B) and (C), $N_{G\left[P_{2} \cup\left\{y_{0}^{1}, y_{1}, y_{2}\right\}\right]}\left(z_{0}\right)=\left\{y_{0}^{1}, y_{1}\right\}$.
(F) For any $v \in V(G)-V\left(P_{2}\right)-\left\{y_{0}^{1}, y_{1}, y_{2}, z_{0}\right\}, v z_{0}, v y_{1}, v y_{2} \in E(G)$.

If $\exists v \in V(G)-V\left(P_{2}\right)-\left\{y_{0}^{1}, y_{1}, y_{2}, z_{0}\right\}$ such that $v y_{2} \notin E(G),\left|N\left(x_{1}\right) \cup N\left(y_{2}\right)\right| \leq$ $|V(G)|-\left|\left\{z_{0}, x_{1}, y_{2}, v\right\}\right|=n-4$, a contradiction; if $v y_{1} \notin E(G),\left|N\left(y_{0}^{1}\right) \cup N\left(y_{1}\right)\right| \leq$ $|V(G)|-\left|\left\{y_{0}^{1}, y_{1}, y_{2}, v\right\}\right|=n-4$, a contradiction; if $v z_{0} \notin E(G),\left|N\left(z_{0}\right) \cup N\left(x_{1}\right)\right| \leq$ $|V(G)|-\left|\left\{z_{0}, x_{1}, y_{2}, v\right\}\right|=n-4$, a contradiction.
(G) For any $v_{1}, v_{2} \in V(G)-V\left(P_{2}\right)-\left\{y_{0}, y_{1}, y_{2}, z_{0}\right\}, v_{1} v_{2} \in E(G)$.

If $\exists v_{1}, v_{2} \in V(G)-V\left(P_{2}\right)-\left\{y_{0}, y_{1}, y_{2}, z_{0}\right\}$ such that $v_{1} v_{2} \notin E(G)$, then by (F), $d\left(v_{1}, v_{2}\right)=2$. By (B), (C) and (D), $\left(y_{0}^{1} \cup V\left(P_{2}\right)\right) \cap\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)=\emptyset$, then $\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)\right| \leq|V(G)|-\left|y_{0}^{1} \cup V\left(P_{2}\right)\right|=n-4=n-\delta(G)$, contrary to (1).

By combining (A)-(G), we conclude that $G \in\left\{G_{4}\right\}$.
Subcase $2.2\left|N_{G-P_{2}}\left(x_{0}\right) \cap N_{G-P_{2}}\left(x_{1}\right)\right|=0$ and $\left|N_{G-P_{2}}\left(x_{2}\right) \cap N_{G-P_{2}}\left(x_{1}\right)\right|=0$. Then by symmetry for any $y_{1} \in N_{G-P_{2}}\left(x_{1}\right), y_{1} x_{0} \notin E(G)$ and $y_{1} x_{2} \notin E(G)$.

First we show that $N_{G-P_{2}}\left(x_{0}\right)$ is complete. If $\exists y_{0}^{1}, y_{0}^{2} \in N_{G-P_{2}}\left(x_{0}\right)$ such that $y_{0}^{1} y_{0}^{2} \notin E(G)$, then $d\left(y_{0}^{1}, y_{0}^{2}\right)=2$. By Lemma $2.3 N_{G-P_{2}}\left(x_{1}\right) \cap\left(N_{G-P_{2}}\left(y_{0}^{1}\right) \cup\right.$ $\left.N_{G-P_{2}}\left(y_{0}^{2}\right)\right)=\emptyset$, then $\left|N_{G}\left(y_{0}^{1}\right) \cup N_{G}\left(y_{0}^{2}\right)\right| \leq|V(G)|-\mid N_{G}\left(x_{1}\right)-\left\{x_{0}, x_{2}\right\} \cup$ $\left\{y_{0}^{1}, y_{0}^{2}\right\} \mid \leq n-\delta(G)$, a contradiction. So $N_{G-P_{2}}\left(x_{0}\right)$ is complete. Next we show
$N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right)$. If $\exists y_{0}^{1} \in N_{G-P_{2}}\left(x_{0}\right)$ such that $y_{0}^{1} x_{2} \notin E(G)$, then $d\left(y_{0}^{1}, x_{2}\right)=2$. Since $N_{G-P_{2}}\left(x_{1}\right) \cap N_{G-P_{2}}\left(x_{2}\right)=\emptyset$, and by Lemma 2.3, $N_{G-P_{2}}\left(x_{1}\right) \cap$ $N_{G-P_{2}}\left(y_{0}^{1}\right)=\emptyset$, we have $\left|N_{G}\left(y_{0}^{1}\right) \cup N_{G}\left(x_{2}\right)\right| \leq|V(G)|-\left|N_{G}\left(x_{1}\right)-\left\{x_{0}\right\} \cup\left\{y_{0}^{1}\right\}\right| \leq$ $n-\delta(G)$, a contradiction. By symmetry,

$$
\begin{equation*}
N_{G-P_{2}}\left(x_{0}\right)=N_{G-P_{2}}\left(x_{2}\right) \text { is complete. } \tag{11}
\end{equation*}
$$

If $x_{0} x_{2} \notin E(G)$, then $d\left(x_{0}, x_{2}\right)=2$. By Subcase 2.2 assumption that $N_{G-P_{2}}\left(x_{1}\right) \cap$ $\left(N_{G-P_{2}}\left(x_{0}\right) \cup N_{G-P_{2}}\left(x_{2}\right)\right)=\emptyset$, so $\left|N_{G}\left(x_{0}\right) \cup N_{G}\left(x_{2}\right)\right| \leq|V(G)|-\left|N_{G}\left(x_{1}\right)\right| \leq$ $n-\delta(G)$, a contradiction. So $x_{0} x_{2} \in E(G)$.

If $\left|N_{G-P_{2}}\left(x_{0}\right)\right| \geq 3$, let $u_{1}, u_{2}, u_{3} \in N_{G-P_{2}}\left(x_{0}\right)$. By (11), $x_{0} u_{1} u_{2} u_{3} x_{2}$ is an (x, y) path of length 4 , contrary to (7). So we must have $\left|N_{G-P_{2}}\left(x_{0}\right)\right|=2$ since $\delta(G) \geq 4$. Then $\delta(G)=4$ and let $N_{G-P_{2}}\left(x_{0}\right)=\left\{u_{1}, u_{2}\right\}$. We show that $V(G)-V\left(P_{2}\right)-\left\{u_{1}, u_{2}\right\}$ induces a complete graph. If $\exists v_{1}, v_{2} \in V(G)-V\left(P_{2}\right)-\left\{u_{1}, u_{2}\right\}$ such that $d\left(v_{1}, v_{2}\right)=$ 2, then $x_{0}, x_{2} \notin N_{G}\left(v_{1}\right) \cup N_{G}\left(v_{2}\right)$, contrary to (1). Let K_{t} denote the graph induced by $V(G)-V\left(P_{2}\right)-\left\{u_{1}, u_{2}\right\}$. By Lemma 2.3, $N_{K_{t}}\left(x_{1}\right) \cap\left(N_{K_{t}}\left(u_{1}\right) \cup N_{K_{t}}\left(u_{2}\right)\right)=\emptyset$. By (7) $N_{K_{t}}\left(u_{1}\right) \cap N_{K_{t}}\left(u_{2}\right)=\emptyset$. Since $d\left(x_{1}, u_{1}\right)=d\left(x_{1}, u_{2}\right)=2, \delta(G) \geq 4$, $\left|N_{K_{t}}\left(u_{1}\right)\right|=\left|N_{K_{t}}\left(u_{2}\right)\right|=1$. Thus the class of graphs is depicted in Fig. 2. Hence $G \in\left\{G_{2}\right\}$.

Theorem 4.5 Let $x, y \in V(G)$. If G has an (x, y)-path $P_{m}=x_{0} x_{1} \cdots x_{m}$ of length m with $3 \leq m \leq|V(G)|-2$, then G has an (x, y)-path of length $m+2$ or $G \in\left\{G_{3}\right\}$ (Fig. 3).

Proof By way of contradiction we assume that

$$
\begin{equation*}
G \text { does not have an }(x, y) \text {-path of length } m+2 \text {. } \tag{12}
\end{equation*}
$$

By Lemma 4.3, we may assume that
$\mid\left\{w \in V(G)-V\left(P_{m}\right):\left|N_{P_{m}}(w)\right| \geq 2\right.$ and $\left.N_{P_{m}}(w)-\left\{x_{0}, x_{m}\right\} \neq \emptyset\right\} \mid \leq 1$.(13)
Case $1 \exists w \in V(G)-V\left(P_{m}\right)$ such that $w x_{i} \in E(G)$ for some $x_{i} \in V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}$ and for any $v \in V(G)-V\left(P_{m}\right)-w, N_{P_{m}}(v) \subseteq\left\{x_{0}, x_{m}\right\}$.

Claim 1 (i) $G\left[V(G)-V\left(P_{m}\right)-w\right]$ is complete.
(ii) $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}\right]$ is complete.
(iii) $N_{G}(w) \subseteq V\left(P_{m}\right)$.
(iv) $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\} \cup w\right]$ is complete.

Proof of Claim 1 (i) Let G_{1}, \ldots, G_{t} be components of $G\left[V(G)-V\left(P_{m}\right)-w\right]$. First we show that each component G_{i} is complete. By way of contradiction that we assume that $\exists y_{1}, y_{2} \in V\left(G_{i}\right)$ such that $d_{G_{i}}\left(y_{1}, y_{2}\right)=2$. Since $m \geq 3$, $x_{1} \in V\left(P_{m}\right)$ is an inner vertex. By Case 1 assumption, $N_{G}\left(x_{1}\right) \subseteq V\left(P_{m}\right) \cup w$. Then $\left|N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)\right| \leq|V(G)|-\left|N_{G}\left[x_{1}\right]-\left\{x_{0}, x_{m}, w\right\} \cup\left\{y_{1}, y_{2}\right\}\right| \leq$ $n-\delta(G)$, a contradiction. Hence G_{i} is complete.

By the assumption of Case $1, N_{P_{m} \cup w}\left(G_{i}\right) \subseteq\left\{x_{0}, x_{m}, w\right\}$ for each $i \in\{1,2, \ldots, t\}$. Since $\kappa(G) \geq 2,\left|N_{P_{m}}\left(G_{i}\right)\right| \geq 2$. If $t \geq 2$, then \exists two vertices from distinct G_{i} and G_{j} respectively are adjacent to a same vertex in $\left\{x_{0}, x_{m}, w\right\}$. Assume that $\exists y_{1}^{\prime} \in$ $G_{i}, y_{2}^{\prime} \in G_{j}$ such that $d_{G}\left(y_{1}^{\prime}, y_{2}^{\prime}\right)=2$. Then $\left|N_{G}\left(y_{1}^{\prime}\right) \cup N_{G}\left(y_{2}^{\prime}\right)\right| \leq|V(G)|-$ $\left|N_{G}\left[x_{1}\right]-\left\{x_{0}, x_{m}, w\right\} \cup\left\{y_{1}, y_{2}\right\}\right| \leq n-\delta(G)$, a contradiction. Hence $t=1$. Thus $G\left[V(G)-V\left(P_{m}\right)-w\right]$ is complete.
(ii) By way of contradiction we suppose that $\exists x_{l}, x_{k} \in V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}$ such that $d_{G}\left(x_{l}, x_{k}\right)=2$. Since $\left|V(G)-V\left(P_{m}\right)\right| \geq 2$, let $y \in V(G)-V\left(P_{m}\right)-w$. By the assumption of Case $1, N_{P_{m} \cup w}(y) \subseteq\left\{x_{0}, x_{m}, w\right\}$. Since x_{l}, x_{k} are both inner vertices, $\left|N_{G}\left(x_{l}\right) \cup N_{G}\left(x_{k}\right)\right| \leq|V(G)|-\left|N_{G}[y]-\left\{x_{0}, x_{m}, w\right\} \cup\left\{x_{l}, x_{k}\right\}\right| \leq$ $n-\delta(G)$, a contradiction. Thus $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}\right]$ is complete.
(iiii) By way of contradiction we assume that w is adjacent to some vertex w_{1} in $G\left[V(G)-V\left(P_{m}\right)-w\right]$. First we assume that $x_{i} \neq x_{1}$ and $x_{i} \neq x_{m-1}$. If $w_{1} x_{0} \in E(G)$ or $w_{1} x_{m} \in E(G)$, then by Claim 1(ii), there is an $\left(x_{i}, x_{m-1}\right)$ path T or $\left(x_{1}, x_{i}\right)$ path T^{\prime} of length $m-2$ in $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}\right]$. And so $x_{0} w_{1} w x_{i} T x_{m-1} x_{m}$ or $x_{0} x_{1} T^{\prime} x_{i} w w_{1} x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). Otherwise since $\kappa(G) \geq 2, \exists w_{2} \in V(G)-V\left(P_{m}\right)-\left\{w, w_{1}\right\}$ such that either $w_{2} x_{0} \in E(G)$ or $w_{2} x_{m} \in E(G)$. Similarly, if $w_{2} x_{0} \in E(G)$ or $w_{2} x_{m} \in E(G)$, then by Claim 1(ii), there is an $\left(x_{i}, x_{m-1}\right)$ path T or $\left(x_{1}, x_{i}\right)$ path T^{\prime} of length $m-3$ in $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}\right]$. And so $x_{0} w_{2} w_{1} w x_{i} T x_{m-1} x_{m}$ or $x_{0} x_{1} T^{\prime} x_{i} w w_{1} w_{2} x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12).

Suppose that $x_{i}=x_{1}$. Then by Lemma 2.3, $x_{0} w_{1} \notin E(G)$. If $\exists w_{2} \in V(G)-$ $V\left(P_{m}\right)-\left\{w, w_{1}\right\}$ such that $w_{2} x_{0} \in E(G)$, then by Claim 1(i), $x_{0} w_{2} w_{1} w x_{1} x_{3} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). So $N_{G-V\left(P_{m}\right)-\{w\}}\left(w_{1}\right) \cap N_{G-V\left(P_{m}\right)-\{w\}}$ $\left(x_{0}\right)=\emptyset$. If $x_{0} x_{m-1} \notin E(G)$, then by Claim 1(ii), $x_{1} x_{m-1} \in E(G)$ and so $d\left(x_{0}\right.$, $\left.x_{m-1}\right)=2$. Together with the assumption of Case $1,\left|N_{G}\left(x_{0}\right) \cup N_{G}\left(x_{m-1}\right)\right| \leq$ $|V(G)|-\left|N_{G}\left(w_{1}\right)-\{w\} \cup\left\{x_{m-1}\right\}\right| \leq n-\delta(G)$, contrary to (1). Hence $x_{0} x_{m-1} \in$ $E(G)$. If $w_{1} x_{m} \in E(G)$, then $x_{0} x_{m-1} x_{m-2} \cdots x_{1} w w_{1} x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). Otherwise since $\kappa(G) \geq 2$ and $N_{G-V\left(P_{m}\right)-\{w\}}\left(x_{0}\right) \cap(V(G)-$ $\left.V\left(P_{m}\right)-\{w\}\right)=\emptyset, \exists w_{3} \in V(G)-V\left(P_{m}\right)-\left\{w, w_{1}\right\}$ such that $w_{3} x_{m} \in E(G)$. Then $x_{0} x_{m-1} x_{m-3} x_{m-4} \cdots x_{1} w w_{1} w_{3} x_{m}(m \geq 4)$ or $x_{0} x_{1} w w_{1} w_{3} x_{m}(m=3)$ is an (x, y)-path of length $m+2$, contrary to (12). By symmetry the case $x_{i}=x_{m-1}$ can be excluded similarly as the case $x_{i}=x_{1}$.
(iv) By Claim 1(ii) it suffices to show that $w x_{k} \in E(G)$ for $k \in\{1,2, \ldots, m-1\}$. Assume that $x_{i-1} \in V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}$ and $w x_{i-1} \notin E(G)$. Since $w x_{i} \in E(G)$, $d\left(x_{i-1}, w\right)=2$. Let $y \in V(G)-V\left(P_{m}\right)-w$. By Claim 1(iii), $N_{G}(w) \subseteq V\left(P_{m}\right)$ and $N_{G-P_{m}}(y) \cap N_{G}[w]=\emptyset$. By the assumption of Case $1 N_{P_{m}}(y) \subseteq\left\{x_{0}, x_{m}\right\}$. So $\left|N_{G}\left(x_{i-1}\right) \cup N_{G}(w)\right| \leq|V(G)|-\left|N_{G}[y]-\left\{x_{0}, x_{m}\right\} \cup\left\{w, x_{i-1}\right\}\right| \leq n-$ $\delta(G)$, contrary to (1). Hence $w x_{i-1} \in E(G)$. Similarly $w x_{i-k} \in E(G)$ where $k \in\{2, \ldots, i-1\}$ and $w x_{i+k} \in E(G)$ where $k \in\{1,2, \ldots, m-i-1\}$. So $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\} \cup w\right]$ is complete.

By Claim 1(iii), $N_{G}(w) \subseteq V\left(P_{m}\right)$. Since $\kappa(G) \geq 2$ and $\delta(G) \geq 3, \mid V(G)-$ $\left.V\left(P_{m}\right)-w\right) \mid \geq 2$ and $\exists v, v^{\prime} \in V(G)-V\left(P_{m}\right)-w$ such that $v x_{0} \in E(G)$ and
$v^{\prime} x_{m} \in E(G)$. By Claim 1(i), if $\left|V(G)-V\left(P_{m}\right)-w\right| \geq m+1$, then there is a $\left(v, v^{\prime}\right)$-path P of length m. So $x_{0} P x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). Hence $2 \leq\left|V(G)-V\left(P_{m}\right)-w\right| \leq m$. By Claim 1(i), (iii) and (iv), this is the class of graphs depicted in Fig. 3 and so $G \in\left\{G_{3}\right\}$.

Case 2 For any $w \in V(G)-V\left(P_{m}\right), N_{P_{m}}(w) \subseteq\left\{x_{0}, x_{m}\right\}$. The following claim can be proved by the argument similar to the Proof of Claim 1.

Claim 2 (i) $G\left[V(G)-V\left(P_{m}\right)\right]$ is complete.
(ii) $G\left[V\left(P_{m}\right)-\left\{x_{0}, x_{m}\right\}\right]$ is complete.

Since $\kappa(G) \geq 2$ and $\delta(G) \geq 3, \exists w, w^{\prime} \in V(G)-V\left(P_{m}\right)$ such that $w x_{0} \in E(G)$ and $w^{\prime} x_{m} \in E(G)$. By Claim 2(i), if $\left|V(G)-V\left(P_{m}\right)\right| \geq m+1$, then $G-V\left(P_{m}\right)$ is a $\left(w, w^{\prime}\right)$-path P of length m. So $x_{0} P x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). Hence $\left|V(G)-V\left(P_{m}\right)\right| \leq m$. By Claim 2(ii), this class of graphs is depicted in Fig. 3.

Case $3 \exists w, w^{\prime} \in V(G)-V\left(P_{m}\right)$ such that $w x_{i} \in E(G)$ and $w^{\prime} x_{j} \in E(G)$ where x_{i}, x_{j} are inner vertices and $w \neq w^{\prime}$. Since x_{i}, x_{j} are both inner vertices, by (13), one of $\left\{w, w^{\prime}\right\}$ has only one neighbor in P_{m}. Without loss of generality we assume that

$$
\begin{equation*}
N_{P_{m}}(w)=\left\{x_{i}\right\} \text { with } 1 \leq i \leq m-1 . \tag{14}
\end{equation*}
$$

Claim $3 x_{i-1} x_{i+k} \in E(G)$ for each k with $0 \leq k \leq m-i$ and $x_{i+1} x_{i-k} \in E(G)$ for each k with $0 \leq k \leq i$.

Proof of Claim 3 Clearly $x_{i-1} x_{i} \in E(G)$ and $x_{i+1} x_{i} \in E(G)$. First we prove that $x_{i-1} x_{i+1} \in E(G)$. If $x_{i-1} x_{i+1} \notin E(G)$, then $d\left(x_{i-1}, x_{i+1}\right)=2$. By Lemma 2.3, $N_{G-P_{m}}(w) \cap\left(N_{G-P_{m}}\left(x_{i-1}\right) \cup N_{G-P_{m}}\left(x_{i+1}\right)\right)=\emptyset$. Together with (14), we have $\left|N_{G}\left(x_{i-1}\right) \cup N_{G}\left(x_{i+1}\right)\right| \leq|V(G)|-\left|N_{G}[w]-\left\{x_{i}\right\}\right| \leq n-\delta(G)$, contrary to (1).

We prove $x_{i-1} x_{i+k} \in E(G)$ for $2 \leq k \leq m-i$ by induction. Assume that $x_{i-1} x_{i+k-1} \in E(G)$. If $x_{i-1} x_{i+k} \notin E(G)$, then $d\left(x_{i-1}, x_{i+k}\right)=2$. If $N_{G-P_{m}}(w) \cap$ $N_{G-P_{m}}\left(x_{i+k}\right) \neq \emptyset$, let $y_{1} \in N_{G-P_{m}}(w) \cap N_{G-P_{m}}\left(x_{i+k}\right)$. Then $x_{0} \cdots x_{i-1} x_{i+k-1}$ $x_{i+k-2} \cdots x_{i} w y_{1} x_{i+k} x_{i+k+1} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). So $N_{G-P_{m}}(w) \cap N_{G-P_{m}}\left(x_{i+k}\right)=\emptyset$. By Lemma 2.3, $N_{G-P_{m}}(w) \cap N_{G-P_{m}}\left(x_{i-1}\right)=\emptyset$. Together with (14), we have $\left|N\left(x_{i-1}\right) \cup N\left(x_{i+k}\right)\right| \leq|V(G)|-\left|N_{G}[w]-\left\{x_{i}\right\}\right| \leq$ $n-\delta(G)$, contrary to (1).

By symmetry, $x_{i+1} x_{i-k} \in E(G)$ for each k with $0 \leq k \leq i$.
Let G_{1}, \ldots, G_{t} be components of $G\left[V(G)-V\left(P_{m}\right)\right]$ and $w \in V\left(G_{1}\right)$. Since $\kappa(G) \geq 2$ and $N_{P_{m}}(w)=\left\{x_{i}\right\}, V\left(G_{1}\right)-\{w\} \neq \emptyset$ and $N_{P_{m}-x_{i}}\left(G_{1}\right) \neq \emptyset$. Pick $v \in V\left(G_{1}\right)-\{w\}$ such that
(a) $N_{P_{m}-x_{i}}(v) \neq \emptyset$;
(b) subject to (a), $d_{G_{1}}(w, v)$ is shortest;
(c) subject to (a) and (b), choose $x_{k} \in N_{P_{m}-x_{i}}(v)$ such that $|k-i|$ is as small as possible.

By symmetry we may assume that $k<i$. Then $k+1<i+1 \leq m$. Let $w w_{1} w_{2} \cdots v$ be a shortest (w, v)-path in G_{1}. If $d_{G_{1}}(w, v)=1$, then $w v \in E(G)$. By Claim 3, $x_{i+1} x_{k+1} \in E(G)$. Then $x_{0} x_{1} \cdots x_{k} v w x_{i} x_{i-1} \cdots x_{k+1} x_{i+1} x_{i+2} \cdots x_{m}$ is an (x, y) path of length $m+2$, contrary to (12). So $d_{G_{1}}(w, v) \geq 2$.

If $d_{G_{1}}(w, v) \geq 3$, then $d_{G}\left(w_{2}, w\right)=2$. We show that $N_{G-P_{m}}\left(x_{i+1}\right) \cap\left(N_{G-P_{m}}(w) \cup\right.$ $\left.N_{G-P_{m}}\left(w_{2}\right)\right)=\emptyset$. Let $y \in N_{G-P_{m}}\left(x_{i+1}\right)$. By Lemma 2.3, $y w \notin E(G)$. If $y w_{2} \in$ $E(G)$ and $d(w, v) \geq 4$, then $d_{G_{1}}(w, y)=3$, contrary to (b); if $y w_{2} \in E(G)$ and $d_{G_{1}}(w, v)=3$, then it is contrary to (c) when $k<i-1$, and $x_{0} x_{1} \cdots x_{k} v w_{2} y x_{i+1}$ $x_{i+2} \cdots x_{m}$, when $k=i-1$, is an (x, y)-path of length $m+2$, contrary to (12). By (14) and (b), we have $N_{P_{m}}(w) \cup N_{P_{m}}\left(w_{2}\right)=\left\{x_{i}\right\}$. So $\left|N_{G}(w) \cup N_{G}\left(w_{2}\right)\right| \leq$ $|V(G)|-\left|N_{G}\left[x_{i+1}\right]-\left\{x_{i}\right\}\right| \leq n-\delta(G)$, contrary to (1). Next we assume that $d_{G_{1}}(w, v)=2$.

Subcase $3.1 k<i-1$.
By Claim $3 x_{k+2} x_{i+1} \in E(G)$. Since $d_{G_{1}}(w, v)=2$, then $x_{0} x_{1} \cdots x_{k} v w_{1} w x_{i} x_{i-1}$ $\cdots x_{k+2} x_{i+1} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12).

Subcase $3.2 k=i-1$.
Fact $1 N_{P_{m}}(v) \subseteq\left\{x_{i-1}, x_{i}, x_{i+1}\right\}$.
Suppose by way of contradiction that $\exists x_{l} \in V\left(P_{m}\right)-\left\{x_{i-1}, x_{i}, x_{i+1}\right\}$ such that $v x_{l} \in E(G)$. By Claim $3 x_{l+2} x_{i+1} \in E(G)$ and $x_{i-1} x_{l-2} \in E(G)$. Then $x_{0} x_{1} \cdots$ $x_{l} v w_{1} w x_{i} x_{i-1} x_{i-2} \cdots x_{l+2} x_{i+1} x_{i+2} \cdots x_{m}$ when $l \leq i-2$ or $x_{0} x_{1} \cdots x_{i-1} x_{l-2} x_{l-3}$ $\cdots x_{i} w w_{1} v x_{l} x_{l+1} \cdots x_{m}$ when $l \geq i+2$ is an (x, y)-path of length $m+2$, contrary to (12).

Fact $2 x_{i+2} \in V\left(P_{m}\right)$.
Since $m \geq 3$, either $x_{i-2} \in V\left(P_{m}\right)$ or $x_{i+2} \in V\left(P_{m}\right)$. If $x_{i-2} \in V\left(P_{m}\right)$, then $N_{G-P_{m}}\left(x_{i-2}\right) \cap N_{G-P_{m}}(w)=\emptyset$ by (b) and $N_{G-P_{m}}\left(x_{i-2}\right) \cap N_{G-P_{m}}(v)=\emptyset$ by Lemma 2.3. So by (14), $N_{G-P_{m}}\left(x_{i-2}\right) \cap\left(N_{G-P_{m}}(w) \cup N_{G-P_{m}}(v)\right)=\emptyset$. Together with Fact 1, we have $|N(w) \cup N(v)| \leq|V(G)|-\left|N\left[x_{i-2}\right]-\left\{x_{i-1}, x_{i}, x_{i+1}\right\} \cup\{w, v\}\right| \leq n-\delta(G)$, contrary to (1).

Fact $3 v x_{i+1} \notin E(G)$.
If $v x_{i+1} \in E(G)$, then $N_{G-P_{m}}\left(x_{i+2}\right) \cap N_{G-P_{m}}(w)=\emptyset$ by (b) and $N_{G-P_{m}}\left(x_{i+2}\right) \cap$ $N_{G-P_{m}}(v)=\emptyset$ by Lemma 2.3. By (14), $N_{G-P_{m}}\left(x_{i+2}\right) \cap\left(N_{G-P_{m}}(w) \cup N_{G-P_{m}}(v)\right)=$ \emptyset. Together with Fact 1, we have $|N(w) \cup N(v)| \leq|V(G)|-\mid N\left[x_{i+2}\right]-\left\{x_{i-1}, x_{i}\right.$, $\left.x_{i+1}\right\} \cup\{w, v\} \mid \leq n-\delta(G)$, contrary to (1).

Fact 4 There exists $y_{1} \in N_{G-P_{m}}\left(x_{i+1}\right)$ such that $y_{1} v \in E(G)$.
By Lemma 2.3, for any $y^{\prime} \in N_{G-P_{m}}\left(x_{i+1}\right), y^{\prime} w \notin E(G)$. If for any $y^{\prime} \in N_{G-P_{m}}$ $\left(x_{i+1}\right), y^{\prime} v \notin E(G)$, then together with Facts 1 and 3 we have $\left|N_{G}(v) \cup N_{G}(w)\right| \leq$ $|V(G)|-\left|N_{G}\left[x_{i+1}\right]-\left\{x_{i-1}, x_{i}\right\} \cup\{w\}\right| \leq n-\delta(G)$, contrary to (1). So $\exists y_{1} \in$ $N_{G-P_{m}}\left(x_{i+1}\right)$ such that $y_{1} v \in E(G)$.

Fact $5 v x_{i} \notin E(G)$.
If $v x_{i} \in E(G)$, by Fact $4, x_{0} x_{1} \cdots x_{i-1} x_{i} v y_{1} x_{i+1} x_{i+2} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12).

Fact $6 x_{i} x_{i+2} \in E(G)$.
If $x_{i} x_{i+2} \notin E(G)$, then $d\left(x_{i}, x_{i+2}\right)=2$. Let $y_{2} \in N_{G-P_{m}}(v)$. By Lemma 2.3, $y_{2} x_{i} \notin E(G)$. By Claim $3 x_{i-1} x_{i+1} \in E(G)$ and by Fact 4, if $y_{2} x_{i+2} \in E(G)$, then $x_{0} x_{1} \cdots x_{i-1} x_{i+1} y_{1} v y_{2} x_{i+2} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). Then $N_{G-P_{m}}(v) \cap\left(N_{G-P_{m}}\left(x_{i}\right) \cup N_{G-P_{m}}\left(x_{i+2}\right)\right)=\emptyset$. Together with Facts 1, 3 and 5, we have $\left|N_{G}\left(x_{i+2}\right) \cup N_{G}\left(x_{i}\right)\right| \leq|V(G)|-\left|N_{G}(v)-\left\{x_{i-1}\right\} \cup\left\{x_{i}\right\}\right| \leq n-\delta(G)$, contrary to (1).

By Fact $6, x_{0} \cdots x_{i-1} v w_{1} w x_{i} x_{i+2} x_{i+3} \cdots x_{m}$ is an (x, y)-path of length $m+2$, contrary to (12). So we excluded both subcases.

Subcase 3.1 and 3.2 can be excluded similarly when $k>i$.
Proof of Theorem 1.4 By Theorem 3.1, 4.4 and 4.5, either $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ or G is [4, n]-pan-connected.

Proof of Theorem 1.3 By the structure of G_{2} and G_{4}, for any $x, y \in V\left(G_{4}\right), G_{2}, G_{4}$ both have (x, y)-paths of length 5 and 6 . By Theorem $4.5, G_{2}$ and G_{4} are both $[5, n]$ -pan-connected. Since each graph in $\left\{G_{1}, G_{3}\right\}$ has a 2-cut, if $\kappa(G) \geq 3, G$ is [5,n]-pan-connected.

References

1. Bondy, A.J., Murty, U.S.R.: Graph Theory with Applications. American Elsevier, New York (1976)
2. Faudree, R.J., Gould, R.J., Jacobson, M.S., Lesnian, L.: Neighborhood unions and highly hamilton graphs. Ars Combinatoria 31, 139-148 (1991)
3. Wei, B., Zhu, Y.: On the pathconnectivity of graphs with large degrees and neighborhood unions. Graphs Combinatorics 14, 263-274 (1998)

[^0]: K. Zhao (\triangle)

 Department of Mathematics, Qiongzhou University, Wuzhishan City, Hainan, People's Republic of China
 e-mail: kewen.zhao@yahoo.com.cn

