关于邻域并-虽我们海南山区90年代初已居于世界领先-可仍一直没有分文经费,其它方面也非常无奈。要知最下面见邻域并中国第一人兼江苏省(世界知名大学数量江苏省超过北京成为中国第一)省工业与应用数学学会第3和第4届正理事长宋增民教授当时说“世界上邻域并做得最好的是海南”(该校邻域并很强:这里第(1)的留校的邻域并专家尹家洪、下面1991年南京大学大会的邻域并作者贾彪,以及南京师大的邻域并专家朱卓宇,和邻域并第一人宋增民理事长都是同班同学,这南京大学大会的这篇邻域并作者赵俊也和宋理事长同单位-不过第一作者是1934年生的东北大学田永程--这大会上当时强大的东北大学还有赵宝泽和同年龄的党恺谦2个中坚教授各独立写一篇-不过其后沈阳经济都不如大连等。当时,邻域并主要用于研究单圈和复圈结构图--单圈非常简单-一出就易找到方法解决-而关于复圈结构图-那可是包含除单圈的哈密顿圈外的齐次可迹、哈密顿连通图、(无参数的2百页的泛圈图//有参数的泛圈图)、点泛圈图、边泛圈图、泛连通图、最短路泛圈等8领域16个小领域--并如这里见世界首富比尔·盖茨的唯一科学论文就做哈密顿图/世界第一企业谷歌也基于图论及哈密顿图--要知之不易如这里第2段见仅一个泛圈图领域就足够名家们写一部专著和花半生去钻探它-而邻域并的这全部领域都是海南琼大最先突破/此外其它重要条件如最小度/度和/范型等也再获进展居世界领先。关于宋理事长的这学会-刚见这页第一段的中国第一科学家曹进德院士成为宋增民理事长之后的第7届正理事长。宋教授当时主持一个在国内外都有影响的强大的哈密顿图国家级科研团队-他的学生许多也已成本领域世界级专家如刚见宋增民教授推荐去香港大学读博的他的研究生陈旭瑾教授都已是全国图论组合学会副理事长、全国博弈论学会副理事长(副主任委员)、最近还任全国数学规划分会副理事长并兼实际掌管的秘书长-对这个学会不了解但排在她前面的陈小君教授是香港理工大学应用数学系主任(只是没有见到陈旭瑾教授的学位论文-不过见到其他一些如宋教授指导的2013年已见是华东师范大学数学系系副主任吕长虹的研究生学位论文[2017年才由数学系改为数学学院并有50个教授且副教授中也有8人是博士生导师])。关于邻域并-先是欧美基于分析综合拓展以前各类先进优化条件的基础上深化综合发展构建之-就象这里第2段见国家基金委仍唯一只怀抱着它-也实没其它办法-要知80/90年代世界各国对它迷信到风起云涌-以为是这世界最悠久的哈密顿性重大难题的天梯似显曙光。这里最后段见其中的点泛圈领域的一个很小部分-偶图做了一辈才仅做到8。不仅偶图还可能要做几辈子,而点泛圈还有立方体、平面、无爪等等各特殊图呢。复圈结构图的上面其它各领域的偶图、立方体、平面等等特殊图呢。虽然我也完成了偶图立方体、无爪、平面图等很多前瞻性研究工作,但其实,世界各国大师权威们更关注把所有特殊图即偶图、立方体等一般化了的非常不容易的一般图-这才登高统观全局,就象我最近在国家基金中说的以美法德英等欧美多国在八十年代更投入以校长主席等为首的圈图的主力部队研究之并提出猜想,但世界各国在1998年前在复圈结构图任何一个领域都没有取得一点突破,而琼州大学在1993年前就不只突破而是彻底完成一般图的复圈结构图的上面哈连通图、泛圈图、点泛圈、边泛圈、泛连通等全部领域)。当时我在电话里问宋教授时因是新人就没有报上我的名,而当我听到宋教授如此评价时,大为震惊--要知道我当时在邻域并的复圈结构图全部领域就只做这一篇-它是我1991年前完成的论文-而且以后各篇比它难得多-更使人望而生畏--但仅这非常简单的一篇就被认为在汪洋大海般广阔的复圈结构图做得最好-怎不震惊--它证明美国5个权威大师1985年在大会提出的这里的点泛圈猜想--这个猜想的界NC+δ³n+1更不如我这篇海南大学的NC+δ³n难于突破-世界各地都象爬在地上攀珠峰之每一步都艰巨、更不如比它更早完成的这里几篇艰难、也不如我这里百篇艰难、甚至n+1啊可能都不如在它之前完成的这十几篇还艰难…-而且全世界都清楚地知道若解决这个点泛圈猜想将也许有可能使上面近十个领域的突破迎来星星点点或各不同程度的曙光(确实,我其后在1993年前就解决完成全部这近十个领域几十篇论文-而它们每一篇都比上面点泛圈猜想这篇难上不只几个层次-且所用方法技术等都没有多少不同的--其拚命才具决定性)--可就使如此明确然而世界各地就是对n+1这么简单的点泛圈猜想却都一直束手无策---必竟世界权威们也在国内外会议和杂志都公报这猜想但这么多年都毫无一点进展也找不到解决的头绪!!!我如此震惊还基于2点:第1、包含哈密顿图的复圈结构图是已有一千多年的世界最悠久的世界艰巨问题(陈景润先生的哥德巴赫猜想才仅有300年,当然哈密顿图的突破非常艰难进展非常缓慢非常小不如陈景润的,也许一千年后仍不如陈景润的);第2、1985年以前研究这世界最悠久领域的最好条件是“最小度”和“度和”,而邻域并是推广包含它俩的,可见这震惊…。
这里一直没有经费,很无奈,可下面这学科世界权威、第2和第3届江苏省工业与应用数学学会理事长
宋增民教授的此邻域并的“哈密尔顿图”项目是该系最先获得国家教育部科技进步奖之一的项目照
我分别做出简单证明和改进的宋理事长的下面2个定理--它们是美国十大老牌大学学术委员会主席Gould大师撰写的世界公认的最权威哈密顿图综述文章引用的宋增民理事长的2篇论文的结果-即宋理事长只有2篇被引入Gould大师的这综述-但竟仍是我国大陆被这综述引用论文最多的专家(这2篇论文的结果在Gould的综述文章中分别列为定理40和定理44。其中宋理事长的这里前一篇6页的论文的定理40我在下面附件给出较简单证明-不过很遗憾因我们这里条件有限我还没有见到
哈密顿图权威大师、中国邻域并领域先导者宋增民理事长在90年代初曾说‘邻域并做得最好的是海南’(注:美国十大老牌名校的学术主席Gould大师撰写的世界公认的最权威哈密顿图综述文章共引用宋理事长2篇论文这也是我国大陆被引用最多的)。宋,增民教授九十年代初已是东南大学学报主编、江苏省数学学会理事长,现也已任多届江苏省工业与应用数学学会理事长,做为科教大省的该学会活动影响全国,他的学会秘书长
Gould主席1991年的综述文章说“There are four fundamnetal results that I
feel deservr special attention here—both for their contribution to the overall
theory and for their affect on the development of the area. In many ways, these
four results are the foundation of much of today’s work”即Gould主席说当今哈密顿图的大量工作依靠的两个结果是这里的定理1.1和定理1.2。在这综述中再说Reectly, a new “generalized degree”approach
based upon neighborhood unions has proved to be useful.即1991年说推广“度型条件”的新条件“邻域并条件”已被证明是很有用的
Gould主席2003年的综述文章再说“I shall restrict attention in the this scetion to results involving size, degree, or neighborhood conditions. Degree conditions are the classic approach to hamiltonian problems and neighborhood unions are a form of generalized degree condition。即Gould主席说在综述中只概述哈密顿图的三个研究工具:“边数条件”“度型条件”和“邻域并条件”。而众所周知,“边数条件”往往被“度型条件”和“邻域并条件”包含而且它的应用不及“度型条件”和“邻域并条件”的1/8。
宋,增民教授的此邻域并的“哈密尔顿图”项目是该系最先获得国家教育部科技进步奖之一的项目照
下面是琼州大学改进的宋增民理事长的哈密顿图的代表性工作(Gould主席撰写的世界公认的最权威哈密顿图综述文章共引用宋理事长的这篇论文和这篇论文-它们分别被我这里的定理[6]和定理[7]改进。2篇论文这也是我国大陆被引用最多的)。宋,增民教授九十年代初已是东南大学学报主编、江苏省数学学会理事长,现也已任多届江苏省工业与应用数学学会理事长,做为科教大省的该学会活动影响全国,他的学会秘书长
Gould主席1991年的综述文章说“There are four fundamnetal results that I
feel deservr special attention here—both for their contribution to the overall
theory and for their affect on the development of the area. In many ways, these
four results are the foundation of much of today’s work”即Gould主席说当今哈密顿图的大量工作依靠的两个结果是这里的定理1.1和定理1.2。在这综述中再说Reectly, a new “generalized degree”approach
based upon neighborhood unions has proved to be useful.即1991年说推广“度型条件”的新条件“邻域并条件”已被证明是很有用的
Gould主席2003年的综述文章再说“I shall restrict attention in the this scetion to results involving size, degree, or neighborhood conditions. Degree conditions are the classic approach to hamiltonian problems and neighborhood unions are a form of generalized degree condition。即Gould主席说在综述中只概述哈密顿图的三个研究工具:“边数条件”“度型条件”和“邻域并条件”。而众所周知,“边数条件”往往被“度型条件”和“邻域并条件”包含而且它的应用不及“度型条件”和“邻域并条件”的1/8。
宋,增民教授的权威性,如大学三年级学生姜益波转让费达1600万的项目,他为咨询数学家特别只专拜访宋,增民教授求教
宋,增民教授的此邻域并的“哈密尔顿图”项目是该系最先获得国家教育部科技进步奖之一的项目照
Abstract: An independent set S of a graph G is said to be essential if S has a pair of vertices that are distance two apart in G. Essential independent set is a good idea and it has been resreched in many papers. In 1994 Song and Zhang considered independent set S and proved that if for each independent set S of cardinality k+1, one of the following condition holds: (i) there exist u≠v in S such that d(u)+d(v) ³n or |N(u)ÇN(v)| ³α; (ii) for any distinct pair u and v in S, |N(u)ÈN(v)|³n−max{d(x)|xÎS}, then G is Hamiltonian. In this paper, we further consider essential independent set and proved that if for each essential independent set S of cardinality k+1, one of the following condition holds: (i) there exist u≠v in S such that d(u)+d(v) ³n or |N(u)ÇN(v)| ³α; (ii) for any distinct pair u and v in S, |N(u)ÈN(v)|³n−max{d(x)|xÎS}, then G is Hamiltonian. Many known results on Hamiltonian graphs are corollaries of this result
Keywords. Hamiltonian graphs; Independent set; Essential independent set.
MSC(2000):
1 Introduction
We consider finite and simple graphs in this paper; undefined nonations and terminology can be found in [1]. In particular, we use V(G),E(G), k(G), a(G) and d(G) to denote the vertex set, edge set, connectivity, independence number and minimum degree of G, repectively. If G is a graph and u,vÎV(G), then a path in G from u to v is called a (u,v)-path of G. If vÎV(G) and H is a subgraph of G, then NH(v) denotes the set of vertices in H that are adjacent to v in G. Thus, dH(v), the degree of v relative to H, is |NH(v)|. We also write d(v)=dG(v) and N(v)=NG(v) .If C and H are subgraphs of G, then NC(H)=ÈuÎV(H)NC(u), and G-C denotes the subgraph of G induced by V(G)-V(C). For vertices u,vÎV(G), the distance between u and v, denoted d(u,v), is the length of a shortest (u,v)-path in G, or ¥ if no such path exists.
Let Cm=x1x2…xmx1 denote a cycle of oeder m. Define
N+cm(u)={xi+1:xiÎNcm(u)},N-cm(u)={xi-1:xiÎNcm(u)} and define N±cm(u)= N+cm(u)ÈN-cm(u), where subscripts are taken modulo m. Let SÍV(G), define △(S)=max{d(x): xÎS}.
A subset SÍV(G) is said to be an essential independent set if S is an independent set in G and there exist two distinct vertices x,yÎS with d(x,y)=2. In this paper, essential independent set short for EIS
The four fundamental results are as follows.
Theorem 1.1 (Dirac, [4]).If d(G)³n/2 , then G is Hamiltonian.
Theorem 1.2 (
Theorem 1.3 (Erdös, Chvátal [3]) If graph G is graph with connectivity κ such that independence number α≤κ, then G is Hamiltonian.
Theorem 1.2 was generalized by Fan [5] who showed that only the pair of vertices with distance 2 are essential in Theorem 1.2
In 1996 Chen et al. considered fuether essential independent set with k vertices and proved the following theorem
Theorem 1.4 (Chen et al., [2]).Let G be a k-connected (k≥2) graph on n≥3 vertices. If max{d(u): uÎS}≥n/2 for any essential independent set S with k vertices in G, then G is Hamiltonian.
In 1997 Liu and Wei considered essential independent set with k+1 vertices and proved
Theorem 1.7 (Liu and Wei., [11]).Let G be a k-connected (k≥2) graph on n≥3 vertices. If max{d(u): uÎS}≥n/2 for any essential independent set S with k+1 vertices in G, then G is Hamiltonian or some nonhamiltonian.
In 2002 Hirohata [10] considered essential independent set with k vertices and obtained the length of longest cycle which correlative to max{d(u): uÎS}. Recently, in [9] Theorem 1.4 and some other results were also generalized in 3-connected graphs
Neighborhood unions has already been proved to be very useful in Hamiltonian graphs. The first use of the generalized degree conditions was to provide another generalization of Dirac’s theorem by faudree et al in 1989.
Theorem 1.8 (Faudree et al, [6]).If G is 2-connected graph and if |N(u)ÈN(v)|≥(2n-1)/3 for each pair of nonadjacent vertices u,vÎV(G), then G is Hamiltonian.
In 1991 Faudree et al considered regarding minimum degree d(G) and obtained
Theorem 1.9 (Faudree et al, [7]).If G is 2-connected graph and if |N(u)ÈN(v)|≥n-d(G) for each pair of nonadjacent vertices u,vÎV(G), then G is Hamiltonian.
In 1994 Song and Zhang [13] considered independent set with k+1 vertices and proved the following theorem (see also theorem 44 of Gould’s survey [8])
Theorem 1.10 (Song and Zhang, [13]).if for each independent set S of cardinality k+1, one of the following condition holds: (i) there exist u≠v in S such that d(u)+d(v) ≥ n or |N(u) ÇN(v)| ≥α; (ii) for any distinct pair u and v in S, |N(u)ÈN(v)|≥ n−max{d(x)|xÎS}, then G is Hamiltonian.
We see that essential independent set had already been researched in the above many papers, so EIS is a very good idea. Therefore, the purpose of this paper is to unify and extend the theorems above by the use of essential independent set and we shall prove the following result.
Theorem .if for each essential independent set S of cardinality k+1, one of the following condition holds: (i) there exist u≠v in S such that d(u)+d(v) ≥ n or |N(u)ÇN(v)| ≥α; (ii) for any distinct pair u and v in S, |N(u)ÈN(v)|≥ n−max{d(x)|xÎS}, then G is Hamiltonian.
Obviously, Our Theorem generalizes Theorem1.1, Theorem1.2, Theorem1.4, Theorem1.8, Theorem1.9 and Theorem1.10.
2 Proof of Theorem
For a cycle Cm=x1x2…xmx1, we write [xi,xj] to denote the section xixi+1…xj of the cycle Cm, where subscripts are taken modulo m. For nonational convenience, [xi,xj] will denote the (xi,xj)-path xixi+1…xj of Cm, as well as the vertex set of the path. We need to establish the claims.
Claim: If G is 2-connected, and assume that G is not Hamiltonian. Let Cm=x1x2…xmx1 be a longest cycle of G, H a component of G-Cm, let xÎV(H) and xiÎNCm(x), and let xjÎNCm(H) satisfying {xi+1,xi+2,…xj-1}ÇNCm(H)=Æ, then the following inequalities (1) to (5) all hold.
Proof. Let P denote a path of H which two end-vertices adjacent to xi,xj, respectively. (I): When xhÎ{xi+1,xi+2,…xj}\{xj,xj-1} is adjacent to xj+1, then xh+1 is not adjacent to xi+1 and x (otherwise, if xh+1 is adjacent to xi+1, then we obtain cycle C*=xiPxjxj-1…xh+1xi+1xi+2…xhxj+1xj+2…xi which is longer than Cm, a contradiction. Since {xi+1,xi+2,…xj-1}ÇNCm(H)=Æ, so xh+1 is not adjacent to x). (II): When xhÎ{xj+1,xj+2,…xi} is adjacent to xj+1, then xh-1 is not adjacent to xi+1 and x( otherwise, if xh-1 is adjacent to xi+1, then cycle C*=xiPxjxj-1…xi+1xh-1xh-2…xj+1xhxh+1…xi is longer than Cm, a contradiction. If xh-1 is adjacent to x. Let P’ be a path of H which two end-vertices adjacent to xh-1,xj, respectively. Then C*=xh-1P’xjxj-1…xhxj+1xj+2…xh-1 is longer than Cm, a contradiction). (III):When yÎV(G-Cm) is adjacent to xj+1, then y is not adjacent to xi+1 and x ( clearly, y is not in H, so y is not adjacent to x. If y is adjacent xi+1, then cycle C*=xiPxjxj-1…xi+1yxj+1xj+2…xi is longer than Cm, a contradiction). In the above (I) we only do not consider that whether the two vertices {xj,xj-1} adjacent to xj+1 or nor. Hence we have
|N(xi+1)ÈN(x)|≤n-(d(xj+1) -|{xj-1,xj}|)-|{xi+1,x}|≤n-d(xj+1). ………(1)
Clearly, all of N+Cm(H)ÈV(H) are not adjacent to xi+1 and xj+1. Hence we also have |N(xi+1)ÈN(xj+1)|≤n-|N+Cm(H) ÈV(H)|≤n-|N+Cm(x)|-|V(H)|. ………(2)
Moreover, if xj-1 is adjacent to xj+1, then xj is not adjacent to xi+1. combine with the discussions above (I), (II) and (III). Thus, there is at least (d(xj+1)-|{xj}|)-|{xi+1}|-|V(H)| vertices is not adjacent to xi+1. Hence
d(xi+1)≤n-(d(xj+1)-|{xj}|)-|{xi+1}|-|V(H)|, implies d(xi+1)+d(xj+1)≤n-|V(H)|, ………(3)
Similarly, all of N+Cm(xj+1) ÈNG-Cm(xj+1) È{x} is not adjacent to x, thus we have
d(x)≤n-| N+Cm(xj+1) ÈNG-Cm(xj+1) È{x}|, implies d(x)+d(xj+1)≤n-1 ………(4)
Clearly, the common neighbor of xi+1) and x are all in Cm. Hence we also have
|N(xi+1)ÇN(x)|≤a-1. ………(5)
Proof of Theorem. Assume that G is not Hamiltonian. Let Cm=x1x2…xmx1 be a longest cycle of G, H a component of G-Cm. Since G is k-connected, so let xÎV(H),xiÎNCm(x), then |NCm(H)|≥k. Let S* denote k vertices of N+Cm(H) with containing vertex xi+1 and let S=S*È{x}. Clearly, S is an EIS. Then G satisfies condition (i) or (ii) of Theorem.
(i) If there exist u≠v in S such that d(u)+d(v) ≥ n or |N(u) ÇN(v)| ≥a.
Since S is an EIS, so a≥k+1. Then by inequalities (3) and (4) of Claim, thus, d(u)+d(v)≥n is impossible. Together with (i), this implies |N(u)ÇN(v)|≥a. By inequality (5) of Claim, if |N(u)ÇN(v)| ≥a, then u,vÎN+Cm(H). Without loss of generality, assume{u,v}={xi+1,xj+1}.
Since Cm is a longest cycle of G, so the common neighbor of N(xi+1)ÇN(xj+1) is not in G-Cm (otherwise, if there exist a component G1 of G-Cm such that uÎV(G1) and uÎN(xi+1)ÇN(xj+1). Let P be a path of G1 which two end-vertices adjacent to xi,xj, respectively. Then cycle C*=xiPxjxj-1…xi+1uxj+1xj+2…xi is longer than Cm, a contradiction. p.s. V(C*)ÉV(Cm) ). Thus, N(xi+1)ÇN(xj+1)ÍV(Cm), this implies |N(xi+1)ÇN(xj+1)|=|NCm(xi+1)ÇNCm(xj+1)|=|N-Cm(xi+1)ÇN-Cm(xj+1)|. Since Cm is a longest cycle of G, so N-Cm(xi+1)ÇN-Cm(xj+1) is a independent set. (otherwise, if xk-1,xh-1ÎN-Cm(xi+1)ÇN-Cm(xj+1) satisfying xk-1xh-1ÎE(G). (a):When xk-1Î{xi+2,xi+3,…,xj-1} and xh-1Î{xj+2,xi+3,…,xi-1}. Let P be a path of H which two end-vertices adjacent to xi and xj, respectively. Then cycle C*=xiPxjxj-1…xkxj+1xj+2…xh-1xk-1xk-2…xi+1xhxh+1…xi is longer than Cm, a contradiction. (b): When xk-1,xh-1Î{xj+2,xi+3,…,xi}. Without loss of generality, say h≥k+1. Then cycle C*=xiPxjxj-1…xi+1xkxk+1…xh-1xk-1xk-2…xj+1xhxh+1…xi is longer than Cm, a contradiction.). Let x be a vertex of H, then {x}È(N-Cm(xi+1)ÇN-Cm(xj+1)) is also a independent set.。By condition(i) of Theorem that |N-Cm(xi+1)ÇN-Cm(xj+1)|≥a, this implies |{x}È( N-Cm(xi+1)ÇN-Cm(xj+1))|≥a+1. It is said that the independence number of G is more than a, but the independence number of G is a, a contradiction.
(ii) If for any distinct pair u and v in S, |N(u)ÈN(v)| ≥ n−max{d(x)|xÎS}.
When △(S)=d(x). Then by inequality (2) of Claim, we have |N(xi+1)ÈN(xj+1)|≤n-d(x)-1, but the condition of (ii) showed that |N(u)ÈN(v)|≥n-△(S), a contradiction.
When △(S)=max{ d(u): uÎN+Cm(H)}. We consider the following cases.
Case 1: | NCm(H)|≥3.
In this case, let xi1,xi2,…,…xi(k-1),xikÎNCm(H) with satisfying {xi1+1,xi1+2,…xi2-1,xi2+1,…
xi(k-1)-1,xi(k-1)+1,…xik-1}ÇNCm(H)=Æ. Let x ÎV(H) be adjacent to some vertex of { xi1,xi2,…,…xi(k-1),xik} and let S={x,xi1+1,xi2+1,…xi (k-1)+1,xik+1}. Clearly, S is an EIS. Without loss of generality ,say △(S)=d(xik+1).
When xik-1xik+1ÏE(G), then by inequality (1) of the Claim, there exist (d(xik+1)-|{xik}|) +|{xi(k-1)+1,x}| vextices are not adjacent to xi(k-1)+1 and x ,Hence we have
|N(xi(k-1)+1)ÈN(x)|≤n-(d(xik+1)-|{xik}|)-|{xi(k-1)+1,x}≤n-d(xik+1) -1, a contradiction.
When xik-1xik+1ÎE(G). Without loss of generality, say that xik+t is not adjacent to xik-1, and all of {xik+1,xik+2…xik+t-2,xik+t-1} are adjacent to xik-1 ( clearly, xik+t must exist in set {xik+1,xik+2,…xi(k+1)-1}. Since xi(k+1)-1 is not adjacent to xik-1). Then, without loss of generality, say that xÎV(H) is adjacent to some vertex of {xi1+1,xi2+1,…xi(k-1)+1}, let S*={x,xi1+1,xi2+1,…xi(k-1)+1,xik+t}. Clearly, S* is an EIS ( otherwise, if S* is not independent set, then there exist a longer cycle. Example,if xi(k-r )+1 is adjacent to xik+t, where 1≤r ≤k-1, let P be a path of H which two end-vertices adjacent to xi(k-r) and xik, then cycle C*= xi(k-r )Pxikxik+1…xik+t-1xik-1xik-2 …xi(k-r )+1xik+t xik+t+1…xi(k-r ) is longer than Cm).
In the case, for the above EIS S*={x,xi1+1,xi2+1,…xi(k-1)+1,xik+t}, we will prove that there does not exist condition (i) of theorem.
First, when w,yÎ{x,xi1+1,xi2+1,…xi(k-1)+1,xik+t}\{xik+t}. we can easy to check d(w)+d(y)≤n-1 and |N(w)ÇN(y)|≤α-1.
Next, when w=xik+t, y=x. Clearly we also have d(w)+d(y)≤n-1 and |N(w)ÇN(y)|≤α-1.
Third, when w=xik+t, yÎ{xi1+1,xi2+1,…xi(k-1)+1}.
Since xik-1xik+1ÎE(G) and each vertex of {xik+1,xik+2…xik+t-2,xik+t-1} is adjacent to xik-1, so we have that each vertex of {x,xi1+1,xi2+1,…xi(k-1)+1,xik+t}\{xik+t} is not adjacent to any vertex of {xik,xik+1…xik+t-2,xik+t-1}(otherwise, we easy to get a longer cycle).
Then clearly, for any xi(k-r )+1 (1≤r ≤k-1),
(1) if xhÎ{xi(k-r )+1, xi(k-r )+2,…xik-1} is adjacent to xi(k-r )+1, then xh-1 is not adjacent to xik+t (otherwise, cycle C*= xikxik+1xik+2…xik+t-1xik-1xik-2…xhxi(k-r )+1 xi(k-r )+2)…xh-1xik+txik+t+1…xi(k-r )
Pxik is longer than Cm, a contradiction); Similarly, we have
(2) If xhÎ{xik+t+1, xik+t+2,…xi(k-r )}\{xi(k-r )} is adjacent to xi(k-r )+1, then xh+1 is not adjacent to xik+t.
By above (1) and (2), we have that if there exist p vertices of Cm\{xi(k-r )} is adjacent to xi(k-r )+1 (or xik+t), then there must also exist p vertices of Cm\{ xi(k-r )} is not adjacent to xik+t (or xi(k-r )+1). And every vertices of H is not adjacent to both xi(k-r )+1 and xik+t, and every vertices of G-Cm-H is at most adjacent to one of {xi(k-r )+1, xik+t}, and xi(k-r )+1 and xik+t} are not adjacent to both xi(k-r )+1 and xik+t. Hence we have
d(xi(k-r )+1)+d (xik+t)≤n-1.
Then, we have |N-(xi(k-r )+1)ÇN-(xik+t)|≤α-1 ( otherwise, by a similer proof of the above Suppose (i), we must get a longer cycle). Namely, |N(xi(k-r )+1)ÇN(xik+t)|≤α-1.
Therefore, when w=xik+t, yÎ{xi1+1,xi2+1,…xi(k-1)+1}, we also have d(w)+d(y)≤n-1 and |N(w)ÇN(y)|≤α-1.
Now, we consider the condition (ii) of Theorem.
When d(xik+t)≤max{d(xih +1):h=1,2,…(k-1)}. Without loss of generality, assume △(S*)=
d(xih+1), where hÎ{1,2,…(k-1) }. Clearly xih+1 is not adjacent to xik+2 (otherwise, cycle C*=xihPxikxik+1xik-1xik-2 …xih+1xik+2xik+3…xih is longer than Cm). And both xi(h-1)+1 and x are all not adjacent to xik+1 (otherwise, we must get a longer cycle). Thus, by inequality (1) of Claim, we have
|N(xi(h-1)+1)ÈN(x)|≤n-(d(xih+1)-|{xih-1,xih}|)-|{xi(h-1)+1,x}|-|{xik+1}|≤n-d(xih+1)-1, a contradiction.
When d(xik+t)>max{d(xih +1):h=1,2,…(k-1)}.
In this case, clearly, none of {xi(k-1)+1,xi(k-1)+2,…xik-1} is adjacent to x. By the choice of xik+t, we have that none of {xik+1,xik+2,…xik+t} is adjacent to xi(k-1)+1 and x (otherwise, if there exist some vertex of {xik+1,xik+2,…xik+t} is adjacent to xi(k-1)+1, then we obtain a cycle longer than Cm). Since Cm is a longest cycle of G.,
(I): When xi(k-1)+rÎ{xi(k-1)+2,xi(k-1)+3,…xik-2} is adjacent to xik+t. Then xi(k-1)+r+1 is not adjacent to xi(k-1)+1 and x.
(II): When xik+rÎ{xik+t,xik+t+1,…xi(k-1)} is adjacent to xik+t, then xik+r-1 is not adjacent to xi(k-1)+1 and x.
(III): When xik+rÎ{xik,xik+1,…xik+t-1}\{xik} is adjacent to xik+t, then xik+r is not adjacent to xi(k-1)+1 and x. Similar the discussion of inequality (1) of Claim, we have |N(xi(k-1)+1)ÈN(x)|≤n-(d(xik+t)-|{xik}|) -|{xi(k-1)+1,x}|≤n-d(xik+t)-1, a contradiction.
Case 2. |NCm(H)|=|{xi,xj}|=2.
In this case, without loss of generality, assume d(xi+1)≤d(xj+1).
Claim(a): Let x,y be two vertices of H which adjacent to xi,xj, respectively. If d(xi+1,xj+1)=2, then H has a hamilton-path of subgraph H with two end-vertices x,y.
Proof of Claim(a). Let P be a longest path of H with two end-vertices x,y. If P is not hamilton-path of subgraph H, let w be a vertex of H-P which adjacent to some vertex of P. Clearly, {xi+1,xj+1,w} is an EIS. And we know that there does not exist condition (i) of Theorem. Thus, there must exist condition (ii) of Theorem, then we can check that w must be adjacent to every vertex of H-{w}( otherwise, by inequality (1) of Claim, we can check that |N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj-1,xj})-|{xi+1}|-(|{x}|+1)≤n-d(xj+1)-1, a contradiction.), so we can get a longer path of H with end-vertices x,y than P, a contradiction.
Claim(b): When vertex u of H is adjacent to xi, then u must be adjacent to xj.
Proof. If vertex u is not adjacent to xj. Then, if xj-1 is adjacent to xj+1, since Cm is a longest cycle, so xj is not adjacent to both xi+1 and x, by a similar proof of inequality (1) of Claim, we can check that |N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj}|) -|{xi+1,x}|≤n-d(xj+1)-1, a contradiction.
Subcase 2.1. |V(H)|≥2.
Let {xi,xj}=NCm(H), x,yÎV(H) are adjacent to xi,xj, respectively. And let |V(H)|=h.
Subcase
Subcase
Without loss of generality, say d(x)³max{d(xi+1),d(xj+1)}. Clearly {x, xi+1,xj+1} is an EIS, And we know that there does not exist condition (i) of Theorem. Thus, there must exist condition (ii) of Theorem. But we can check that |N(xi+1)ÈN(xj+1)|≤n-|N(x)|-|{x}|≤ n−max{d(x)|xÎS}-1, contrary to condition (ii) of Theorem.
Subcase
Without loss of generality, say d(xj+1)=max{d(xi+1),d(xj+1),d(x),d(y)}. Since d(xi+1,xj+1) ³3, let xkÎ{xj+1,xj+2,…xi} adjacent to xj+1 with k is as large as possible. then xk is not adjacent to xi+1; Let xhÎ{xi+1,xi+2,…xj-1} adjacent to xj+1 with h ia as small as possible. then xh is not adjacent to xi+1. Hence, we can check |N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj,xj-1}|) -|{xi+1,x}|-|{xk,xh}|≤n-d(xj+1)-2, a contradiction.
Subcase
By Claim(a) that H has a Hamilton-path of H with two end-vertices x,y.
(I): If xkÎ{xj+1,xj+2,…xi} is adjacent to xi+1, and xk+rÎ{xj+1,xj+2,…xi} is adjacent to xj+1 (where r ≥1, and xk+1 is not adjacent to xi+1). Then, none of {xk+1,xk+2,…xk+h} is adjacent to xj+1 (otherwise, together with Claim(a) that H has a Hamilton-path of H with two end-vertices x,y, we can get a cycle longer than Cm). Hence we have
|N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj-1,xj}|) -|{xi+1,x}|-(|{xk+1,xk+2,…xk+h}|-1)≤n-d(xj+1)-1,
a contradiction. Similarly, if xhÎ{xi+1,xi+2,…xj-1} is adjacent to xj+1, and xh+r is adjacent to xi+1, we also can get a contradiction.
(II): If there dose not exist above case (I). Namely, when xkÎ{xj+1,xj+2,…xi} is adjacent to xj+1, then none of {xj+1,xj+2,…xk-1} is adjacent to xi+1. When xhÎ{xi+1,xi+2,…xj-1} is adjacent to xj+1, then none of {xh+1,xh+2,…xj} is adjacent to xi+1. In this case, under the conditions of Theorem, when xkÎ{xj+1,xj+2,…xi} is adjacent to xj+1, and none of {xk+1,xk+2,…xi} is adjacent to xj+1, then all of {xj+1,xj+2,…xk} is adjacent to xj+1, every vertex of {xk,xk+1,…xi} is all adjacent to xi+1. Similarly, when xtÎ{xi+1,xi+2,…xj} is adjacent to xi+1, and none of {xt+1,xt+2,…xj} is adjacent to xi+1, then every vertex of {xi+1,xi+2,…xt} is all adjacent to xi+1. every vertex of {xt,xt+1,…xj} is adjacent to xj+1 (otherwise, we must have |N(xi+1)ÈN(x)|≤n-d(xj+1)-1, a contradiction). Clearly, xk-1 is not adjacent to any of {xk,xk+1,…xt}-{xk,xt} and xk-1 is not adjacent to xj (otherwise, we obtain a longer cycle). Then, if d(xi+1)≤d(xk-1). We have
|N(xi+1)ÈN(x)|≤n-(d(xk-1)-|{xk,xt}|)-|{xi+1,x,xj}|≤n-d(xk-1)-1, a contradiction.
If d(xi+1)>d(xk-1). We have |N(xk-1)ÈN(x)|≤n-(d(xi+1)-|{xk,xt}|)-|{xi-1,x,xj}|≤n-d(xi+1)-1, a contradiction.
Subcase 2.2.|V(H)|=1.
Let V(H)={x},
| NCm(x)|=|{x1,xh}| . In this case, we have Cm=Cn-1.
Otherwise, if Cm≠Cn-1, by not
subcase 2.1 and subcase
Therefore, Cm=Cn-1 holds.
Then, without loss of generality, assume d(x2)≤d(xh+1). Let S={x,x2,xh+1}.
Claim (I): x2 is not adjacent to xh. Otherwise, we have |N(x2)ÈN(x)|=d(x2). By condition (ii) of Theorem that |N(x2)ÈN(x)|≥n-△(S)=n-d(xh+1), we have d(x2)i ≥n-d(xh+1) this contradicts the inequality (3) of Claim.
Claim (II): xh-1 is adjacent to xh+1. Otherwise, By inequality (3) of Claim and by Claim (I), we further have d(x2)≤n-(d(xh+1)-|{xh}|)-|{x2}|-|{xh}|-|V(H)|≤n-d(xh+1)-2. But by the condition (ii) of Theorem and Claim (I), we have d(x2)=|N(x2)ÈN(x)| -1≥n-△(S) -1=n-d(xh+1) -1, a contradiction.
Claim (III): x2 is adjacent to xn-1. Otherwise, if x2 is not adjacent to xn-1. When d(x2)=d(xh+1). We can apply the Claim(II) that x2 is adjacent to xn-1, a contradiction. When d(x2)<d(xh+1). If d(xn-1)≥d(xh-1), we can apply the Claim(II) that x2 is adjacent to xn-1, a contradiction. If d(xn-1) <d(xh-1), together with inequality (3) of Claim we have max{d(x2),d(xn-1)}< (n-1)/2. Let S={x,x2,xn-1},clearly, this will contradict the condition (ii) of Theorem.
Claim (IV): Let xtÎ{xh+1,xh+2,…xn-1} is adjacent to x2 and none of {xh+1,xh+2,…xt-2,xt-1} is adjacent to x2; And let xkÎ{x2,x3,…xh-1} is adjacent to xh+1 and none of {x2,x3,…xk-2,xk-1} is adjacent to xh+1, then d(xt-1)+d(xk-1)≤n-3.
Proof of Claim(IV). In this case, then xt is adjacent to xh+1 (otherwise, by inequality (1) of Claim, we have |N(x2)ÈN(x)|≤n-(d(xh+1)-|{xh-1,xh}|)-|{x2,x}|-|{xt-1}|=n-d(xh+1)-1, this contradicts the condition (ii) of Theorem.
Since Cn-1 is a longest cycle of G, when xrÎ{x2,x3,…xh-1} is adjacent to to x2, then xr-1 is not adjacent to xt-1. When xrÎ{xt,xt+1,…xn-1,x1}-{xn-1,x1} is adjacent to x2, then xr+1 is not adjacent to xt-1. Clearly, x2 is not adjacent to xh and xh+1, and xt-1 is not adjacent to xh-1 and xh. Hence we have
d(xt-1)≤n-(d(x2)-|{xn-1,x1}|)-|{xh-1,xh,xt-1,x}|=n-d(x2)-2.
Similarly, we have d(xk-1)≤n-d(xh+1) -2.
This implies d(xt-1)+d(xk-1)≤[n-d(x2) -2]+[n-d(xh+1) -2]. ……… (6)
By assume d(x2)£d(xh+1). And by condition (ii) of Theorem, we have d(x2)+1=|N(x2)ÈN(x)|≥n-d(xh+1), implies d(x2)+d(xh+1)≥n-1. By inequality (3) of Claim, we have d(x2)+d(xh+1)≤n-1, this implies d(x2)+d(xh+1)=n-1. Together with above inequality (6), we have
d(xt-1)+d(xk-1)≤[n-d(x2) -2]+[n-d(xh+1) -2]=n-3. ……… (7)
The following we will prove d(xk-1)+d(xt-1)≥n-2, which contradicts the above inequality.
First we must get the following claims.
Claim(A). If xk-1xhÎE(G) , then d(xk-1)≥d(xh-1); If xk-1xhÏE(G), then d(xk-1)≥d(xh-1) -1.
Proof. If one of Claim(A) is fail, then. By condition (ii) of Theorem, and clearly {x,xn-1, xk-1} is an EIS, we have
d(xn-1)+1=|N(xn-1)ÈN(x)|≥n-△{x,xn-1, xk-1}. ……… (8)
If d(xk-1)≥d(xn-1). Then inequality (8) can be d(xn-1)+1≥|N(xn-1)ÈN(x)|≥n-△{x,xn-1,xk-1}= n-d(xk-1), Since Claim(A) is fail, hence the right of the inequality
n-d(xk-1)>n-d(xh-1). Namely, d(xn-1)+1>n-d(xh-1)
this implies d(xn-1)+d(xh-1)>n-1, this contradicts inequality (3) of Claim that d(xn-1)+d(xh-1)£n-1.
If d(xk-1)<d(xn-1). Combine with the above hypothesis that d(xn-1)≤d(xh-1),
And if all of Claim(A) are fail, then
When xk-1xhÎE(G) d(xh-1)+1>d(xk-1)+1³|N(xk-1)ÈN(x)| ……… (9)
When xk-1xhÏE(G) d(xh-1)+1>d(xk-1)+2³|N(xk-1)ÈN(x)| ……… (10)
The right of two inequalities above |N(xk-1)ÈN(x)|≥n-△{x,xn-1,xk-1}=n-d(xn-1), all implies d(xn-1)+d(xh-1)>n-1, this contradicts inequality (3) of Claim that d(xn-1)+d(xh-1)£n-1.
Thus, all of Claim (A) are true.
Claim (B ). If xt-1xnÎE(G), then d(xt-1)≥d(xn -1). If xt-1xnÏE(G), then d(xt-1)≥d(xn -1) -1.
By a proof similar to Claim (A), so the Proof of Claim (B) is omitted.
( The Proof of Claim (B) is following. If one of Claim(B) is fail, then. By condition (ii) of Theorem, and clearly {x,xh-1, xt-1} is an EIS, we hav
d(xh-1)+1=|N(xh-1)ÈN(x)|≥n-△{x,xh-1, xt-1}. ……… (11)
If d(xt-1)≥d(xh-1). Then inequality (11) can be d(xh-1)+1≥|N(xh-1)ÈN(x)|≥n-△{x,xh-1,xt-1}= n-d(xt-1), Since Claim(A) is fail, hence the right of the inequality
n-d(xt-1)>n-d(xn-1). Namely, d(xn-1)+1>n-d(xh-1)
this implies d(xn-1)+d(xh-1)>n-1, this contradicts inequality (3) of Claim that d(xn-1)+d(xh-1)£n-1.
If d(xt-1)<d(xh-1).,
And if all of Claim(A) are fail, then
When xt-1xnÎE(G) d(xn-1)+1>d(xt-1)+1³|N(xt-1)ÈN(x)|
When xt-1xn ÏE(G) d(xn-1)+1>d(xt-1)+2³|N(xt-1)ÈN(x)|
The right of two inequalities above |N(xt-1)ÈN(x)|≥n-△{x,xh-1,xt-1}=n-d(xh-1), all implies d(xn-1)+d(xh-1)>n-1, this contradicts inequality (3) of Claim that d(xn-1)+d(xh-1)£n-1. )
Then, when xk-1 is adjacent to xh; or xt-1 is adjacent to xn. We have d(xk-1)+d(xt-1)≥d(xn-1)+d(xh-1) -1=n-2. This contradicts inequality (7).
When xk-1 is not adjacent to xh; and xt-1 is not adjacent to xn. We have d(xk-1)+d(xt-1)≥d(xn-1)+d(xh-1)-2=n-3. Together with inequality (7), we have d(xk-1 )+d(xt-1)= n-3.
Then clearly, xk-1xt-1ÏE(G) ( If xk-1xt-1ÎE(G), then easily we have Cn, a contradiction). And clearly, xk-1x1ÏE(G) and xt-1xhÏE(G) (otherwise, if xk-1x1ÎE(G) or xt-1xhÎE(G), we will get Cn, a contradiction). Since xk-1xhÏE(G) and xt-1xnÏE(G). So all of {xk-1 ,xt-1, x1,xh} are not adjacent to both xk-1 and xt-1. Together with d(xk-1 )+d(xt-1)= n-3, then both xk-1 and xt-1 must have at least a common neighbor vertex. So {x,xt-1,xk-1} is an EIS.
Without loss of generality, assume d(xt-1)≥d(xk-1).
By condition (ii) of Theorem, we have d(xk-1)+2=|N(xk-1)ÈN(x)|≥n-△{x,xt-1,xk-1}= n-d(xt-1), implies d(xk-1)+ d(xt-1)≥n-2, which contradicts inequality (7)
Therefore, the proof of Theorem is complete.
References
[1] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan London ,New York,1976.
[2] G.T.Chen, Y.Egawa, X.Liu and A. Saito, Essential independent set and Hamiltonian cycles, J.Graph Theory 21(1996) 243-250
[3] V Chvátal, P Erdös, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111-113.
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math.Soc.2(1952) 69-81.
[5] G.H. Fan, New sufficient conditions for cycles in graphs, J.Combin.Theory Ser.B 37 (1984), 221-227
[6] R.J.Faudree, R.J.Gould, M.S.Jacobson and R.H.Schelp, Neighborhood unions and Hamiltonian properties in graphs, J. Combin. Theory Ser. B 47 (1989), 1, 1-9.
[7] R.J.Faudree,
R.J.Gould, M.S.
Jacobson, R.H.Schelp
and L.Lesniak, Neighborhood unions and highly
[8] R.J.Gould, Advances on the Hamiltonian problem—A survey, Graph and Combin. 19(2003), 7-52.
121-157.
[9] R.J. Gould, K. Zhao, A new sufficient condition for Hamiltonian graphs, Arkiv för Matematik, 44 (2006),2, 299-308
[10] K. Hirohata, Essential independent sets and long cycles, Discrete Math. 250 (2002), 1-3, 109-123.
[11] X. Liu, B. Wei, A generalization of Bondy's and Fan's sufficient conditions for Hamiltonian graphs, Discrete Math. 169 (1997) 249-255
[12] O. Ore., Note on Hamiltonian circuits, Amer.Math.Monthly 67 (1960), 55.
[13] Z. Song, K. Zhang, Neighborhood unions and Hamiltonian properties, Discrete Math.133(1994) 319-324.
摘要:1994年宋,增民教授和张,克民教授在《Discrete Math.》证明: G是独立数为a的k连通n≥3阶图,对图G的任一恰有k+1的点的独立点集S,若满足下列条件之一,则是哈密尔顿图
(i) 存在u,vÎS,使d(u)+d(v)≥n或|N(u)ÇN(v)|≥a;
(ii) 对S中任意两点u,v,均有|N(u)ÈN(v)|≥n-△(S)
因
即我们证明: G是独立数为a的k连通n≥3阶图,对图G的任一含距离是2的两点的恰有k+1的点的独立点集S,若满足下列条件之一,则是哈密尔顿图
(I)存在u,vÎS,使d(u)+d(v)≥n或|N(u)ÇN(v)|≥a;
(II)对S中任意两点u,v,均有|N(u)ÈN(v)|≥n-△(S)
(III)对S中含满足1≤|N(u)ÇN(v)|≤a-1的两点的任意k的点的点集S* ,均有max{d(u),uÎS*}≥n/2.
关键词:哈密尔顿图;邻域并条件;Essential 独立集。
中图分类号:0157.5 MS(2000)分类号:
本文研究的图G=(V,E)均是简单图,a(G)、k(G)和d(G)分别表示图G的独立数、连通度和最小度。S是一个点集,则记△(S)=maxd(x): xÎS}。记u是G 的一点,G1和H为G的两个子图,和记NG1(u)={vÎV(G1):uvÎE(G)}。NG1(H)=ÈuÎV(H)NG1(u),NG(u)可简记为N(u),N[u]=N(u)È{u},图G长为m的圈标记为Cm:x1x2…xmx1, N+cm(u)={xi+1:xiÎNcm(u)},N-cm(u)={xi-1:xiÎNcm(u)},N±cm(u)= N+cm(u)ÈN-cm(u)。
A set S of vertices of graph G is said to be an essential independent set if S is independent set and has two distinct vertices x and y with d(x,y)=2。Essential independent set简写为EIS
正如哈密尔顿图权威Gould RJ在1991年撰写的名为“Updating the Hamiltonian problem---a survey”的世界著名的综述文章[1]引言写下:There are four fundamental results that I feel deserve special attention here—both for their contribution to the overall theory and for their affect on the development of the area. In many ways, these four results are the foundation of much of today’s work.
Gould, RJ上面所指的四个经典结果是:
伦顿大学的著名数学家Dirac于1952年得到的哈密顿图的开创性结果:
定理 1[2] (Dirac):如果n阶图G的d(G)³n/2,则G是哈密尔顿图。
耶鲁大学著名图论学家Ore在1960年得到的进一步的结果:
定理 2[3] (Ore.).:如果n阶图G 的不相邻的任意两点u,v均有d(u)+d(v)≥n,则G是哈密尔顿图。
滑铁卢大学的Bondy和时在斯坦福大学的Chvátal在1976年得到的闭包条件。
定理3[4] (Bondy, Chvátal):一个n阶图G是哈密尔顿图当且仅当它的闭包Cn(G)是哈密尔顿图.
时在普林斯顿大学的Erdös和时在斯坦福大学的 Chvátal在1972年得到结果:
定理4[5] (Chvátal, Erdös):如果图G的a(G)≤k(G),则G是哈密尔顿图。
除了上面四个哈密顿图的经典结果,至今邻域并条件也已引发出大量论文。其邻域并条件的基本经典结果是1989年Faudree和Gould等得到的如下结果:
定理5[6](Faudree等):如果2连通n≥3阶图G不相邻的任意两点u,v均有|N(u)ÈN(v)|≥(2n-1)/3,则G是哈密尔顿图。
1991年,Faudree和Gould等又再得到如下邻域并条件的结果:
定理6[7](Faudree等):如果2连通n≥3阶图G不相邻的任意两点u,v均有|N(u)ÈN(v)|≥n-d(G),则G是哈密尔顿图。
范,更华教授也获得著名的下面结果:
定理7[8] (Fan)“若图中每对距离为2的点中有一点的度数至少是图的点数的一半,则该图存在哈密顿圈”
1994年,宋,增民教授和张,克民教授在文献[9]证明改进上面几个定理的新条件(此论文是Gould, RJ在2003年发表的哈密顿图综述文章[10]引用的248篇论文之一。其中现在国内工作的我国数学家有19篇论文被引用):
定理7[9](Song, Zhang):G是独立数为a的k连通n≥3阶图,对图G的任一恰有k+1的点的独立点集S,若满足下列条件之一,则G是哈密尔顿图:
(i)存在u,vÎS,使d(u)+d(v)≥n或|N(u)ÇN(v)|≥a;
(ii)对S中任意两点u,v,均有|N(u)ÈN(v)|≥n-△(S)。
本文中,我们得到包含和改进上面除了等价条件的闭包方法外的所有条件的如下新条件:
定理: G是独立数为a的k连通n≥3阶图,对图G的任一含距离是2的两点的恰有k+1的点的独立点集S,若满足下列条件之一,则是哈密尔顿图:
(i)存在u,vÎS,使d(u)+d(v)≥n或|N(u)ÇN(v)|≥a;
(ii)对S中任意两点u,v,均有|N(u)ÈN(v)|≥n-△(S)。
(iii)对S中任意含距离是2的两点的k的独立点的点集S* ,均有max{d(u),uÎS*}≥n/2.
下面先证明断言。
断言:若G不是哈密尔顿图,记Cm:x1x2…xmx1为G的一个最长圈,H为G-Cm的一分支,因G是2连通,所以有xÎV(H),xiÎNCm(x),xjÎNCm(H)且{xi+1,xi+2,…xj-1}ÇNCm(H)=Ф,则有下面不等式(1)至不等式(5)成立。
证明:记H中一条两端点和xi,xj分别相邻的路为P,其后(I):当xhÎ{xi+1,xi+2,…xj}\{xj,xj-1}和xj+1相邻时,则xh+1和xi+1,x均不相邻(因若xh+1和xi+1相邻,则有圈C*:xiPxjxj-1…xh+1xi+1xi+2…xhxj+1xj+2…xi比Cm长,矛盾;xh+1和x相邻,记P’是H中一条两端点和xh+1,xj分别相邻的路,则有圈C*:xh+1P’xjxj-1…xhxj+1xj+2…xh+1比Cm长,矛盾);(II):当xhÎ{xj+1,xj+2,…xi}和xj+1相邻时,则xh-1和xi+1,x均不相邻(因若xh-1和xi+1相邻,则有圈C*:xiPxjxj-1…xi+1xh-1xh-2…xj+1xhxh+1…xi比Cm长,矛盾; xh-1和x相邻,记P’是H中一条两端点和xh-1,xj分别相邻的路,则有圈C*:xh-1P’xjxj-1…xhxj+1xj+2…xh-1比Cm长,矛盾);(III):当yÎV(G-Cm)和xj+1相邻时,y和xi+1,x不相邻(显然此时y不在H中,所以y和x不相邻;若y和xi+1相邻,则有圈C*:xiPxjxj-1…xi+1yxj+1xj+2…xi比Cm长,矛盾)。从(I)知道我们不考虑和xj+1相邻的两点{xj,xj-1}和xj+1,
建立
u for uÏV(C)
f(u)í u+
for uÎu
u for u=u2-
u+ for uÎu2+C®v2\{v2}
u- for uÎv2+C®u-
从而有|N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj-1,xj}|)-|{xi+1,x}|≤n-d(xj+1). ………(1)
显然N+Cm(H) ÈV(H)中点和xi+1,xj+1均不相邻,则有|N(xi+1)ÈN(xj+1)|≤n-|N+Cm(H) ÈV(H)|≤n- |N+Cm(x)|-| V(H)|. ………(2)
另外,当{xi+1,xi+2,…xi-1}中的xj-1和xj+1相邻时,则xj和xi+1不相邻。一起结合上面的(I)(II)(III),从而有(d(xj+1)-|{xj}|)-|{xi+1}|-|V(H)|多个点和xi+1不相邻,即有
d(xi+1)≤n-(d(xj+1)-|{xj}|)-|{xi+1}|-|V(H)|,有d(xi+1)+d(xj+1)≤n-|V(H)|, ………(3)
类似地,显然N+Cm(xj+1) ÈNG-Cm(xj+1) È{x}中点和x均不相邻,从而有
d(x)≤n-| N+Cm(xj+1) ÈNG-Cm(xj+1) È{x}|,有d(x)+d(xj+1)≤n-1 ………(4)
显然,xh-1和x的公共邻点只能在圈Cm上,所以有
|N(xi+1)ÇN(x)|≤a-1. ………(5)
定理的证明:若G不是哈密尔顿图,记Cm:x1x2…xmx1为G的一个最长圈,H为G-Cm的一分支,xÎV(H),xiÎNCm(x),因G是k连通的,所以有|NCm(H)|≥k,记S’为N+Cm(H)中含xi+1的k个点,和记S=S’È{x}。显然S是EIS
(i)若存在u,vÎS,使d(u)+d(v)≥n或|N(u)ÇN(v)|≥a。
显然a≥k+1,此时由断言的(3)和(4)知道不可能有d(u)+d(v)≥n 。因此,此时只有|N(u)ÇN(v)|≥a这种可能,再由断言的(5)知,只能存在xi+1,xj+1ÎN+Cm(H)使|N(xi+1)ÇN(xj+1)|≥a。
此时,因Cm是最长圈,显然, N(xi+1)ÇN(xj+1)没有点在G-Cm中(否则,若G-Cm的分支G1有点uÎN(xi+1)ÇN(xj+1),则记P为G1中一条两端点和xi,xj分别相邻的路,则有圈C*:xiPxjxj-1…xi+1uxj+1xj+2…xi比Cm长,矛盾,且C*含Cm的所有点),所以N(xi+1)ÇN(xj+1)中点全在Cm中,即|N(xi+1)ÇN(xj+1)|=|NCm(xi+1)ÇNCm(xj+1)|=|N-Cm(xi+1)ÇN-Cm(xj+1)|,又Cm是最长圈,所以N-Cm(xi+1)ÇN-Cm(xj+1)全部点和H中任取一点组成的点集中没有相邻的两点(比如,若xk-1、xh-1ÎN-Cm(xi+1)ÇN-Cm(xj+1), 使xk-1xh-1ÎE(G),(a):当xk-1Î{xi+2,xi+3,…,xj-1}, xh-1Î{xj+2,xi+3,…,xi-1}时,记P为H中一条两端点分别和xi和xj相邻的路,则有圈C*:xiPxj
xj-1…xkxj+1xj+2…xh-1xk-1xk-2…xi+1xhxh+1…xi比Cm长,矛盾,且C*含Cm的所有点;(b):当xk-1,xh-1Î{xj+2,xi+3,…,xi}时,不妨认为h≥k+1,则有圈C*:xiPxjxj-1…xi+1xkxk+1…xh-1xk-1xk-2…xj+1xhxh+1…xi比Cm长,矛盾,且C*含Cm的所有点),即这样的互不相邻点一共不少于α+1,和独立数是α矛盾。所以|N(u)ÇN(v)|≤α-1。
(ii)若对任意S中的任意两点u,v均有|N(u)ÈN(v)|≥n-△(S)。
当S中的最大度点是x。
则由断言的(2),有|N(xi+1)ÈN(xj+1)|≤n-d(x)-1,和上面定理条件|N(u)ÈN(v)|≥n-△(S)矛盾。
当S中的最大度点在N+Cm(H)中时。
我们分情况讨论如下:
情况1:| NCm(H)|≥3。
此时,记xi1,xi2,…,…xi(k-1),xikÎNCm(H)且要满足{xi1+1,xi1+2,…xi2-1,xi2+1,…xi(k-1)-1,
xi(k-1)+1,…xik-1}ÇNCm(H)=Ф,记x 为H中和{ xi1,xi2,…,…xi(k-1),xik}某点相邻的一点,记S={x,xi1+1,xi2+1,…xi(k-1)+1,xik+1},则S是EIS。不妨认为△(S)=d(xik+1)。
若xik-1xik+1ÏE(G),则由断言的(1),将有|N(xi(k-1)+1)ÈN(x)|≤n-(d(xik+1)-|{xik}|)-|{xi(k-1)+1,
x})≤n- d(xik+1)-1,矛盾。
若xik-1xik+1ÎE(G),记xik+t是和xik-1不相邻,而xik+1,xik+2…xik+t-2,xik+t-1是和xik-1均相邻的点(显然这样的点存在于{xik+1,xik+2,…xi(k+1)-1}中,如xi(k+1)-1就和xik-1不相邻)。其后,取S’={x,xi1+1,xi2+1,…xi(k-1)+1,xik+t},其中x和k-1个点中之一点相邻,则S’是EIS。(因为显然它是独立集。否则,将有更长圈。比如若xi(k-i)+1和xik+t相邻,其中1≤i≤k, 其后记P为H中一条两端点和xi(k-i), xik分别相邻的路,则有比Cm更长的圈xi(k-i)Pxikxik+1…xik+t-1xik-1xik-2 …xi(k+i)+1xik+txik+t+1…xi(k-i))。
当d(xik+t)≤max{d(xit+1):t=1,2,…(k-1)}时。不妨认为△(S’)=d(xih+1),显然xih+1和xik+2不相邻(否则有比Cm更长的圈xihPxikxik+1xik-1xik-2 …xih+1xik+2xik+3…xih),xi(h-1)+1,x均和xik+1不相邻(否则有比Cm更长的圈),所以断言的(1)不等式右边在可减去有,
|N(xi(h-1)+1)ÈN(x)|≤n-(d(xih+1)-|{xih-1,xih}|)-|{ xi(h-1)+1,x}|-|{xik+1}|≤n- d(xih+1)-1,矛盾。
当d(xik+t)>max{d(xit+1):t=1,2,…(k-1)}时。
显然{xi(k-1)+1,xi(k-1)+2,…xik-1}中点和x均不相邻,根据xik+t的选择,有{xik+1,xik+2,…xik+t}中点和xi(k-1)+1, x均不相邻(否则,如果 {xik+1,xik+2,…xik+t} 中有点和 xi(k-1)+1,则有更长圈)。因Cm为G的一个最长圈,所以,(I):当{xi(k-1)+2,xi(k-1)+3,…xik-2}中点xi(k-1)+r和xik+t相邻时,则xi(k-1)+r+1和xi(k-1)+1,x均不相邻;(II):当{xik+t,xik+t+1,…xi(k-1)}中点xik+r和xik+t相邻时,则xik+r-1和xi(k-1)+1,x均不相邻;(III):当{xik,xik+1,…xik+t-1}\{xik}中点xik+r和xik+t相邻时,则xik+r和xi(k-1)+1,x均不相邻。其后类似断言的(1)的分析,将有|N(xi(k-1)+1)ÈN(x)|≤n-(d(xik+t)-|{xik}|-|{xi(k-1)+1,x}|≤n- d(xik+t)-1,矛盾。
情况2:| NCm(H)|=|{xi,xj}|=2。
此时,认为d(xi+1)≤d(xj+1)。我们断言(a):H是完全子图。否则,取x,y为H中距离是2的两点。如果 max {d(x),d(y)}≥d(xj+1),由情况1,易有矛盾。如果max {d(x),d(y)}≤d(xj+1),有|N(x)ÈN(y)|≤n-(d(xi+1)-|{xi,xj}|)-|{xi+1,xj+1}|-|{x,y}|≤n-d(xj+1)-2,矛盾。
断言(b):H的每一点都和xi,xj均相邻。否则,若H中有x和xj不相邻,类似有|N(xi+1)ÈN(x)|≤n- (d(xj+1)-|{xj}|-|{xi+1,x}≤n- d(xj+1)-1,矛盾。两断言正确。
子情况2.1:|V(H)|≥2.
记xi,xjÎNCm(H), |V(H)|=h,(I):若有xkÎ{xj+1,xj+2,…xi}和xi+1相邻,也有xk+rÎ{xj+1,
xj+2,…xi}和xj+1相邻(r是自然数,且认为xk+1和xi+1不相邻),则显然{xk+1,xk+2,…xk+h}中点和xj+1均不相邻(否则,因H 是完全子图,将有更长的圈),
从而有|N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj-1,xj}|-|{xi+1,x}|-(|{xk+1,xk+2,…xk+h}|-1)≤n-d(xj+1)-1,矛盾。同样若xhÎ{xi+1,xi+2,…xj-1}和xj+1相邻时,也有xh+r和xi+1相邻时,也有矛盾。
(II):没有情况(I)。即当xkÎ{xj+1,xj+2,…xi}和xj+1相邻,则{xj+1,xj+2,…xk-1}中点和xi+1均不相邻;同时当xhÎ{xi+1,xi+2,…xj-1}和xj+1相邻时,则{xh+1,xh+2,…xj}中点和xi+1均不相邻。此时,要满足定理条件,必有当xk∈{xj+1,xj+2,…xi} 和 xj+1相邻而{xk+1,xk+2,…xi}的每点和xj+1均不相邻时,则{xj+1,xj+2,…xk}的每点和xj+1均相邻,{xk,xk+1,…xi}的每点和xi+1也均相邻。类似地,当xt∈{xi+1,xi+2,…xj}和xi+1相邻而{xt+1,xt+2,…xj}中点和xi+1均不相邻时,则{xi+1,xi+2,…xt}的每点和xi+1均相邻,{xt,xt+1,…xj}的每点和xj+1也均相邻(否则,易有|N(xi+1)ÈN(x)|≤n-d(xj+1)-1, 矛盾)。也容易看出xk-1和xj不相邻(否则易有更长圈)。其后, 如果d(xi+1)≤d(xk-1)。则易计算|N(xi+1)ÈN(x)|≤n-(d(xk-1)-|{xk,xt}|)-|{xi+1,x,xj}|≤n-d(xk-1)-1,矛盾。如果d(xi+1)>d(xk-1)。也易计算|N(xk-1)ÈN(x)|≤n- (d(xi+1)-|{xk,xt}|)-|{xi-1,x,xj}|≤n-d(xi+1)-1,矛盾。
子情况2.2:|V(H)|=1.
记V(H)={x},| NCm(x)|=|{x1,xh}|
我们断言Cm=Cn-1。否则,因为没有子情况2.1和子情况
其后,不妨认为d(x2)≤d(xh+1)。取S={x,x2,xh+1}.
我们断言(1):x2和xh不相邻。否则,|N(x2)ÈN(x)|=d(x2),由定理条件|N(x2)ÈN(x)|≥n-△(S)=n-d(xh+1),得d(x2)≥n-d(xh+1),与断言的(3)矛盾。
我们断言(2)::xh-1和xh+1相邻。否则,由断言的(3)进一步有d(x2)≤n-(d(xh+1)-|{xh}|)-|{x2}|-|{xh}|-|V(H)|≤n-d(xh+1)-2,而由定理条件应有d(x2)=|N(x2)ÈN(x)|-1≥n-△(S)-1=n-d(xh+1)-1,矛盾。
我们再断言(3):x2和xn-1相邻。否则,当d(x2)=d(xh+1)时。类似上面断言(2)有x2和xn-1相邻,矛盾;若d(x2)<d(xh+1)时,若d(xn-1)≥d(xh-1),类似断言(2)有x2和xn-1相邻,矛盾。若d(xn-1)<d(xh-1),此时,max{d(x2),d(xn-1)}<(n-1)/2,取S={x,x2,xn-1},显然将不满足定理条件,矛盾。
其后,记xt是{xh+1,xh+2,…xn-1}中的和x2均相邻的下标最小的点。此时xt也和xh+1相邻(因为若xt和xh+1不相邻,由断言(1)将有|(x2)ÈN(x)|≤n-(d(xh+1)-|{xh-1,xh}|)-|{x2,x}|-|{xt-1}|=n-d(xh+1)-1,和应有定理条件|N(x2)ÈN(x)|≥n-△(S)=n-d(xh+1)矛盾)。因Cn-1是最长圈,所以,当xrÎ{x2,x3,…xh-1}和x2相邻时,则xr-1和xt-1不相邻;当xrÎ{xt,xt+1,…xn-1}\{xn-1}和x2相邻时,则xr+1和xt-1不相邻;显然x2和xh,xh+1均不相邻,而xt-1和xh-1,xh均不相邻,从而易有d(xt-1)≤n-(d(x2)-|{xn-1}|)-|{xh-1,xh,xt-1}|=n-d(x2)-2。类似地记xk是{x2,x3,…xh-1}中的和xh+1相邻的下标最小的点,则类似有d(xk-1)≤n-d(xh+1)-2。
从而有d(xt-1)+d(xk-1)≤[n-d(x2)-2]+[n-d(xh+1)-2]=n-3。 (*)
认为d(x2)≥d(xh+1)。由定理条件有d(xh+1)+1=|N(xh+1)ÈN(x)|≥n-d(x2),有d(x2)+d(xh+1)≥n-1;由断言的(3)有d(x2)+d(xh+1)≤n-1,所以推出d(x2)+d(xh+1)=n-1。同理:d(xn-1)+d(xh-1)=n-1。
认为d(xn-1)≤d(xh-1)。
(1)断言:若x k-1和xh 相邻,则d(xk-1)≥d(xh-1)。否则,若d(xk-1)<d(xh-1)。从而定理条件,有d(x n-1)+1=|N(x n-1)ÈN(x)|≥n-△{x, xn-1,xk-1}
若d(xk-1)≥d(xn-1)
则上面不等式d(x n-1)+1=|N(x n-1)ÈN(x)|≥n-△{x, xn-1,xk-1}= n- xk-1)> n- d(xh-1)。与d(xn-1)+d(xh-1)=n-1,矛盾。
若d(xk-1)<d(xn-1)
则从而定理条件,有d(xh-1)+1>d(x k-1)+1=|N(x k-1)ÈN(x)|≥n-△{x, xn-1,xk-1}= n- d(xn-1)。与d(xn-1)+d(xh-1)=n-1,矛盾。所以断言d(xk-1)≥d(xh-1)正确。
(2)类似有,若x k-1和xh 不相邻,则d(xk-1)≥d(xh-1)-1。
(3)同样有若x t-1和x n相邻,则d(x t-1)≥d(x n -1)。否则,若d(x t-1)<d(x n -1), 则d(xn -1)+1> d(x t-1)+1=|N(x t-1)ÈN(x)|≥n-△{x, x t-1,x h-1}= n- d(x h-1)。与d(xn-1)+d(xh-1)=n-1,矛盾。
(4)类似有,若x t-1和x n 不相邻,则d(x t-1)≥d(x n -1)-1。
若x k-1和xh 相邻,或x t-1和x n 相邻。则d(xk-1) +d(x t-1)≥d(x n -1)+d(xh-1)-1= n-2。与(*)矛盾。所以,只能是:x k-1和xh 不相邻,及x t-1和x n 不相邻。得
则d(xk-1) +d(x t-1)≥d(x n -1)+d(xh-1)-2= n-3。结合(*),得d(xk-1 )+d(x t-1)= n-3。
因x k-1和xh 不相邻,及x t-1和x n 不相邻,所以,x k-1和 x t-1的必有公共邻点,显然xk-1和xt-1不相邻(否则有比Cn-1长的圈),其后取S={x,xt-1,xk-1},认为d(xt-1)≥d(xk-1)
则从而定理条件,有 d(xk-1)+2=|N(x k-1)ÈN(x)| ≥n-△{x, x t-1,xk-1}= n- d(x t-1),有
n-3=d(xk-1)+ d(x t-1)≥n-2。矛盾。
若(iii)含满足1≤|N(u)ÇN(v)|≤a-1的两点u,v的任意k的点的点集S* ,均有max{d(u),uÎS*}≥n/2.
先证明几个引理:
For a cycle Cm=x1x2¼xmx1, we write [xi,xj] to denote the section xixi+1¼xj of the cycle Cm,where subscripts are taken modulo m. We need to establish some lemmas.
Lemma 1. Suppose that Cm=x1x2¼xmx1 is a longest cycle of a graph G, H is a component of G-V(Cm,), and xi,xj are distinct vertices in NCm(H). Then each of the following must hold.
(i) {xi-1,xi+1, xj-1,xj+1}ÇNCm(H)=Ф.
(ii) xi+1xj+1ÏE(G) and xi-1xj-1ÏE(G).
(iii) If xtxj+1ÎE(G) for some vertex xtÎ [xj+2,xi] ,then xt-1xi+1ÏE(G) and xt-1ÏNCm(H).
(iv) If xtxj+1ÎE(G) for some vertex xtÎ [xi+1,xj-1] , then xt+1xi+1ÏE(G).
(v) No vertex of G-(V(Cm)-V(H)) is adjacent to both xi+1 and xj+1.
Proof. If any one of (i),(ii) and (v) were to fail, then it is easy to see that G would have a cycle longer than Cm, a contradiction.
Suppose that (iii) fails. Then there exists a vertex xtÎ{xj+1,xj+2,¼xi} satisfying xtxj+1ÎE(G) and either xt-1xi+1ÎE(G) or xt-1 is adjacent to some vertex of H. Suppose first that xt-1xi+1ÎE(G), let P1(H) denote a path of H whose two end-vertices are adjacent to xi and xj, respectively. Then xiP1(H)xjxj-1¼xi+1xt-1xt-2¼xj+1xtxt+1¼xi is a cycle longer than Cm, a contradiction. Hence if xtxj+1ÎE(G) then xt-1xi+1ÏE(G). Next we suppose that xt-1 is adjacent to some vertex of H. Let P2(H)=w1w2¼wr denote a path of H whose two end-vertices w1,wr are adjacent to xj,xt-1 (or to xt-1 and xj ),respectively. Then we have xjP2(H)xt-1xt-2¼xj+1xtxt+1¼xj is a cycle longer than Cm, a contradiction. Thus if xtxj+1ÎE(G), then V(H)ÇN(xt-1)=Ф.
The proof for (iv) is similar, and so this complete the proof of the lemma.
Lemma 2 . Let G be a 2-connected graph of
order n, Cm=x1x2¼xmx1 be a
cycle of G, and H be a component of G-V(Cm). If there exist two
distinct vertices xi+1,xj+
Proof. Suppose, to the contrary, that
G does not have a cycle C* longer than Cm with V(Cm)ÌV(C*) (1)
Suppose first that there exist two distinct vertices xi+1,
xj+
If there exists a yÎV(G-V(H)ÈV(Cm)) adjacent to xj+1, then y is not adjacent to xi+1. For otherwise, if yxi+1ÎE(G), then a cycle C*=xiPxjxj-1¼xi+1yxj+1xj+2x¼xi longer than Cm with V(Cm)ÌV(C*), contrary to (1). Again by (1), none of the vertex of H is adjacent to xi+1 or xj+1.
We define a bijection f on N(xj+1) as follows: Let vÎN(xj+1),
v when vÏV(Cm)
f(u)=ív+=xk+1 when v=xkÎ{xi+1,xi+2,…xj}\{xj}
v-=xk-1 when v=xkÎ{xj+1,xj+2,…xi}
Thus, | f(N(xj+1))|=d(xj+1)-|{xj}|
By the previous arguments, for any yÎf(N(xj+1)), we have yxi+1ÏE(G). Since Cm is a longest cycle , so every vertex of H is not adjacent to xi+1 and xj+1, and f(N(xj+1))ÇV(H)=φ,
Since xi+1Ï f(N(xj+1)) and xi+1ÏN(xi+1), Hence we can check that
d(xi+1)£n-| f(N(xj+1))|-(|{xi+1}|+|V(H)|)£n-(d(xj+1)-|{xj}|)-(|{xi+1}|+|V(H)|)£n-|V(H)|.
Since |V(H)| ³1, this implies d(xi+1)+d(xj+1) £n-1, a contradiction.
We apply the similar arguments as above to prove that if there exist a vertex xi+1Î
N+Cm(H) and a vertex yÎV(H) with d(xi+1) ³n/2 and d(y) ³n/2, then there exists a cycle C* longer than Cm with V(Cm)ÌV(C*).
Therefore, Lemma 2 is proved.
Lemma 3. If G is a k-connected (k³2) nonhamiltonian graph of order n, and if max {d(v),vÎS}³n/2 for every independent set S of order k such that S has two distinct vertices x,y with 1£|N(x)ÇN(y)| £a-1. Let Cm=x1x2¼xmx1 be a longest cycle of G, then for any a component H of G-Cm, there must exist at least a vertex xÎV(H) such that x adjacent to some vertex of Cm d(x) ³n/2.
Proof . Assume ,to the contrary, that Lemma 3 is not true. It is say that there exists a component H of G-Cm, d(x)<n/2 for every xÎV(H) of |NCm(x)| ³1.
Since G is k-connected, then |NCm(H)| ³k. Clearly the independence number a(G)³k+1. By the assumption of Lemma 3, we can choose a vertex subset V* of N+Cm(H) with |V*|=k-1 such that there exists a vertex (say xi+1), xi+1ÎV* with d(x,xi+1)=2. Then N(x)ÇN(xi+1)ÍNCm(H). For otherwise, there would be a uÎV(H)ÇN(x)ÇN(xi+1), which implies a longer cycle C* with V(C*)=V(Cm)È{x,u}, namely, V(Cm)ÌV(C*), a contradicion . Since N+Cm(H) is independent set, we have |NCm(H)|=|N+Cm(H)|£a(G)-1, which implies 1£|N(x)ÇN(xi+1)| £a(G)-1. If follows that the vertex set V*È{x} is a k-element set satisfying the hypothesis of Lemma 3 . Since d(x)<n/2, by thehypothesis of Lemma3, there must be a vertex ( say xh+1) in V* satisfying d(xh+1)³n/2. By the Lemma 2, every vertex of N+Cm(H)\{xh+1} must have degree less n/2. Since G is k-connected (k³2), there must be some vertex yÎV(H) with xj+1ÎN+Cm(y)\{xh+1}(possibly y=x). Similarly, we have 1£|N(y)ÇN(xj+1)|£a(G)-1. We can choose k-2 vertices of N+Cm(H)\{xh+1,xj+1} together with {y,xj+1} to form a vertex set V**, which also satisfies the hypothesis of Lemma3. Hence there must be a vertex uÎV** such that d(u)³n/2. Since d(xh+1)³n/2, by Lemma 2, there exists a longer cycle C* with V(Cm)ÌV(C*), contrary to the assumption that Cm is a longest cycle.
Lemma 3 is proved.
Proof of Condition (iii) . suppose, to the contrary, that G is not Hamiltonian. Let Cm=x1x2¼xmx1 be a longest cycle of G, and let H be a component of subgraph G-V(Cm).
We consider the following two cases.
Case1: There exists xÎV(H) satisfying |NCm(x)| ³1 and d(x)<n/2.
In this case, since G is k-connected, then |NCm(H)| ³k. Clearly the independence number a(G)³k+1. By the assumption of case 1, we can choose a vertex subset V* of N+Cm(H) with |V*|=k-1 such that there exists a vertex(say xi+1), xi+1ÎV* with d(x,xi+1)=2. Then N(x)ÇN(xi+1)ÍNCm(H) . For otherwise, there would be a uÎV(H)ÇN(x)ÇN(xi+1), which implies a longer cycle C* with V(Cm)ÌV(C*), a contradicion . Since N+Cm(H) is independent set, we have |NCm(H)|=|N+Cm(H)|£a(G)-1, which implies 1£|N(x)ÇN(xi+1)| £a(G)-1. If follows that the vertex set V*È{x} is a k-element set satisfying the hypothesis of Theorem1.6 . Since d(x)<n/2, by the hypothesis of Condition (iii), there must be a vertex ( say xh+1) in V* satisfying d(xh+1)³n/2. By the Lemma 2, every vertex of N+Cm(H)\{xh+1} must have degree less n/2. Since G is k-connected (k³2), there must be some vertex yÎV(H) with xj+1ÎN+Cm(y)\{xh+1}(possibly y=x). Similarly, we have 1£|N(y)ÇN(xj+1)|£a(G)-1. We can choose k-2 vertices of N+Cm(H)\{xh+1,xj+1} together with {y,xj+1} to form a vertex set V**, which also satisfies the hypothesis of Condition (iii). Hence there must be a vertex uÎV** such that d(u)³n/2. Since d(xh+1)³n/2, by Lemma 2, there exists a longer cycle C* with V(Cm)ÌV(C*), contrary to the assumption that Cm is a longest cycle.
Case2: d(x)³n/2 for every xÎV(H) of |NCm(x)|³1.
Without loss of generality, pick xiÎNCm(x), and xÎV(H).
Claim: G-Cm is connected. Suppose not, there exists a component H* in G-V(H)ÈV(Cm). By Lemma 3, there must exist a vertex yÎV(H*) adjacent to some vertex of Cm with d(y)³n/2, which implies d(x)+d(y)³n. On the other hand, if x is adjacent to xiÎV(Cm), then x is not adjacent to xi+1 and xi-1. Hence we have d(x)£|V(Cm)|/2+|V(H)\{x}|. Similarly, we have
d(y) £|V(Cm)|/2+|V(H*)\{y}|.
It follows that d(x)+d(y) £ [|V(Cm)|/2+|V(H)\{x}|]+[|V(Cm)|/2+|V(H*)\{y}|]£n-2,
a contradiction. Hence G-Cm is connected. This prove the claim.
Let xi,xjÎNCm(H) such that {xi+1,xi+2,¼xj-1}ÇNCm(H)=Ф with |{xi+1,xi+2,¼xj}| is as small as possible among all pair vertices xh,xtÎNCm(H) with {xh+1,xh+2,¼xt-1}ÇNCm(H)=Ф. By d(x)³n/2, we have |V(H)|³2. For otherwise, |V(H)|=1, and so Cm=Cn-1. By |NCm(H)|=d(x) ³n/2, there must exist xi,xi+1ÎV(Cn-1) such that xi,xi+1 are both adjacent to x, and so G is hamiltonian,a contradiction.
By the choice that |{xi+1,xi+2,¼xj}| is as small as possible, and since |V(H)|+|NCm(H)| ³n/2+1,|V(H)|³2, |NCm(H)|³2, we have
|{xi+1,xi+2,¼xj-1}|£ (n-|V(H)|-|NCm(H)|)/|NCm(H)| £ [n-(|V(H)|+|NCm(H)|)]/|NCm(H)|
£ [n-(1+n/2)]/|NCm(H)| £ (n/2-1)/|NCm(H)| £ (|V(H)|+|NCm(H)|-2)/|NCm(H)|
£|V(H)|/|NCm(H)|+1-2/|NCm(H)|<|V(H)|.
Namely, |{xi+1,xi+2,¼xj-1}|<|V(H)| ¼(2)
Let P(xi,xj) be a path of H with the two of its end-vertices adjacent to xi,xj of Cm, respectively. Let C1 be a cycle as long as possible such that C1 contain every vertex of cycle xjxj+1¼xiP(xi,xj)xj. By the Lemma 2 and Lemma 3 , we can see that there exists a vertex x in every component Hi of G-V(C1) where x is adjacent to a vertex of C1 with d(x) ³n/2. For otherwise, there exists an xÎV(Hi) satisfying |NC1(x)|³1 and d(x)<n/2. Then we can apply the similar proof of case 1, to obtain a longer cycle C* with V(C1)ÌV(C*), contrary to the choice of C1. By the silimar arguments as above we can prove that G-C1=Hi is connected. Clearly, for any vertex x of Hi, we have xÎ{xi+1,xi+2,¼xj-1}ÈV(H),and we can see that every vertex of {xi+1,xi+2,¼xj-1} is not adjacent to any vertex of H, and since Hi is connected, we can have V(Hi)Ç{xi+1,xi+2,¼xj-1}=Ф or V(Hi)ÇV(H)=Ф. If V(Hi) Ç{xi+1,xi+2,¼xj-1}=Ф, we can see that C1 contains every vertex of Cm and some vertex of H, contrary to the assumption that Cm is a longest cycle. Therefore,we must have V(Hi)ÇV(H)=Ф. Hence for any vertex x of Hi, xÎ{xi+1,xi+2,¼xj-1}. This, together with (2), implies |V(H)|>|{xi+1,xi+2,¼xj}|³|V(Hi)|. Therefore, C1 contains every vertex of Cm and some vertex of H, contrary to the assumption that Cm is a longest cycle.
Therefore, the proof of Condition (iii) is complete.
先再现原文中一些定义:Let C be a cycle of maximum length in G, let B be any component of G\V(C ), NC(B)={v1, v2, …vm}. Let xi be any vertex in B which is adjacent to vi, ujÎvj-1+C®vj- such that ujÏN(vj+), and vÎN(vj+) for all vÎuj+C®vj.
其中第5个断言是:
Claim2.5. Let vÎN(u2)ÈN(x2).Then vÏu
(1) if vÎv
(2) if vÎu1+C®u1-,then u1v-ÏE(G).
Proof. of Claim2.5. If there exists vÎv
u1v+C®u2vC¬v1+u1+C¬v1x1Bx2v
is longer than C,(a contradiction.) If there exists vÎu2+C®u1-, then when vÎN(x2) such that u1v-ÎE(G), the cycle
u1v-C¬v1+u1+C®v1x1Bx2vC®u1
is longer than C;when vÎN(u2), vÎv2+C®u1 and the cycle
u1v-C¬v2+u2+C®v2x2Bx1v
is longer than C.
These are contradictions. Claim2.5 holds.
We define a bijection f on N(u2)ÈN(x2) as follows: Let uÎN(u2)ÈN(x2),
u for uÏV(C)
f(u)í u+
for uÎu
u for u=u2-
u- for uÎv2+C®u-
From the previous arguments and Claim2.5,for any uÎf(N(u2)ÈN(x2)),we have uu1ÏE(G). Note that x2Ïf(N(u2)ÈN(x2)) and x2u1ÏE(G), and we obtain
t2≤d(u1)≤n-|N(u2)ÈN(x2)|-1≤t2-1
a contradiction.Therefore, Theorem 1.4 holds.
首句“Let vÎN(u2)ÈN(x2).Then vÏu
所以补充1:Let vÎN(u2)ÈN(x2).Then vÏu
其后的:(2) if vÎu1+C®u1-,then u1v-ÏE(G).(这里(2)有印刷错误,即u1+C®u1-应是vÎu2+C®u1-,因为u1+C®u1-Év
其后,when vÎN(u2), vÎv2+C®u1 and the cycle
u1v-C¬v2+u2+C®v2x2Bx1v
is longer than C知道还没有解决vÎN(u2),
vÎu2+C®v2,就是说if
there exists vÎÎu2+C®v such that u1v-ÎE(G),也没有获得圈u1v-C¬v2+u2+C®v2x2Bx1v
u1+v1+C®u2vC®u2vC®u1,因此,
应补:vÎN(u2), vÎu2+C®v2 such that u1v+ÎE(G) and the cycle
u1v+C®v2Bv
is longer than C, a contradiction。
接着:
We define a bijection f on N(u2)ÈN(x2) as follows: Let uÎN(u2)ÈN(x2),
u for uÏV(C)
f(u)í u+
for uÎu
u for u=u2-
u- for uÎu2+C®u-
From the previous arguments and Claim2.5,for any uÎf(N(u2)ÈN(x2)),we have uu1ÏE(G). Note that x2Ïf(N(u2)ÈN(x2)) and x2u1ÏE(G), and we obtain
t2≤d(u1)≤n-|N(u2)ÈN(x2)|-1≤t2-1,
a contradiction. Therefore, Theorem 1.4 holds.
这部分的证明也有两个问题。第一、“f(u)=u-, for uÎu2+C®u-”的定义是行不通的。如uÎu2+C®v-, 显然从补充2应是u+u1ÏE(G)而不是u-u1ÏE(G)(因为也可能有u-u1ÎE(G),这并没有什么矛盾。而从补充2看到,只有u+u1ÎE(G)才必定有矛盾,所以一定是u+u1ÏE(G)),而且这可能性一定存在,如u=u2+Îu2+C®v-,另u2v2ÎE(G)和u2v2++ÎE(G)都有存在的可能且没有矛盾,那和u2相邻的两点v2,v2++都只对应一点v2和u1不相邻,这时f(u)就不是一一对应,要达到一一对应,就应限制定义域为V(C)\{v2}或V(C)\{v2++}。
另外,还有补充1,所以必修正为补充3:
u for uÏV(C)
f(u)í u+
for uÎu
u for u=u2-
u+ for uÎu2+C®v2\{v2}
u- for uÎv2+C®u-
其后,“t2≤d(u1)≤n-|N(u2)ÈN(x2)|-1≤t2
Claim2.5. Let vÎN(u2)ÈN(x2).Then vÏu
(1) if vÎv
(2) if vÎu2+C®u1-,then u1v-ÏE(G).
Proof. of Claim2.5. If there exists vÎv
u1v+C®u2vC¬v1+u1+C¬v1x1Bx2v
is longer than C,(a contradiction.) If there exists vÎu2+C®u1- such that u1v-ÎE(G), then when vÎN(x2) such that u1v-ÎE(G), the cycle
u1v-C¬v1+u1+C®v1x1Bx2vC®u1
is longer than C;when vÎN(u2), vÎv2+C®u1 such that u1v-ÎE(G) and the cycle
u1v-C¬v2+u2+C®v2x2Bx1v
is longer than C.
When vÎN(u2), vÎu2+C®v2 such that u1v+ÎE(G) and the cycle
u1v+C®v2Bv
is longer than C, a contradiction
These are contradictions. Claim2.5 holds.
We define a bijection f on N(u2)ÈN(x2) as follows: Let uÎN(u2)ÈN(x2),
u for uÏV(C)
f(u)í u+
for uÎu
u for u=u2-
u+ for uÎu2+C®v2\{v2}
u- for uÎv2+C®u-
From the previous arguments and Claim2.5,for any uÎf(N(u2)ÈN(x2)),we have uu1ÏE(G). Note that x2Ïf(N(u2)ÈN(x2)) and x2u1ÏE(G), 因此,我们推得不等式:
t2≤d(u1)≤n-|N(u2)ÈN(x2)|-|{x2}|+|{v2}|+|{u1+}|≤t2+1。
下面我们给出定理的证明:
断言:若G不是哈密尔顿图,记Cm:x1x2…xmx1为G的一个最长圈,H为G-Cm的一分支,因G是2连通,所以有xÎV(H),xiÎNCm(x),xjÎNCm(H)且{xi+1,xi+2,…xj-1}ÇNCm(H)=Ф,则有下面不等式(1)至不等式(5)成立。
证明:记H中一条两端点和xi,xj分别相邻的路为P,其后(I):当xhÎ{xi+1,xi+2,…xj}\{xj,xj-1}和xj+1相邻时,则xh+1和xi+1,x均不相邻(因若xh+1和xi+1相邻,则有圈C*:xiPxjxj-1…xh+1xi+1xi+2…xhxj+1xj+2…xi比Cm长,矛盾;xh+1和x相邻,记P’是H中一条两端点和xh+1,xj分别相邻的路,则有圈C*:xh+1P’xjxj-1…xhxj+1xj+2…xh+1比Cm长,矛盾);(II):当xhÎ{xj+1,xj+2,…xi}和xj+1相邻时,则xh-1和xi+1,x均不相邻(因若xh-1和xi+1相邻,则有圈C*:xiPxjxj-1…xi+1xh-1xh-2…xj+1xhxh+1…xi比Cm长,矛盾; xh-1和x相邻,记P’是H中一条两端点和xh-1,xj分别相邻的路,则有圈C*:xh-1P’xjxj-1…xhxj+1xj+2…xh-1比Cm长,矛盾);(III):当yÎV(G-Cm)和xj+1相邻时,y和xi+1,x不相邻(显然此时y不在H中,所以y和x不相邻;若y和xi+1相邻,则有圈C*:xiPxjxj-1…xi+1yxj+1xj+2…xi比Cm长,矛盾)。从(I)知道我们不考虑和xj+1相邻的两点{xj,xj-1}和xj+1,
建立
u for uÏV(C)
f(u)í u+
for uÎu
u for u=u2-
u+ for uÎu2+C®v2\{v2}
u- for uÎv2+C®u-
从而有|N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj-1,xj}|)-|{xi+1,x}|≤n-d(xj+1). ………(1)
显然N+Cm(H) ÈV(H)中点和xi+1,xj+1均不相邻,则有|N(xi+1)ÈN(xj+1)|≤n-|N+Cm(H) ÈV(H)|≤n- |N+Cm(x)|-| V(H)|. ………(2)
另外,当{xi+1,xi+2,…xi-1}中的xj-1和xj+1相邻时,则xj和xi+1不相邻。一起结合上面的(I)(II)(III),从而有(d(xj+1)-|{xj}|)-|{xi+1}|-|V(H)|多个点和xi+1不相邻,即有
d(xi+1)≤n-(d(xj+1)-|{xj}|)-|{xi+1}|-|V(H)|,有d(xi+1)+d(xj+1)≤n-|V(H)|, ………(3)
类似地,显然N+Cm(xj+1) ÈNG-Cm(xj+1) È{x}中点和x均不相邻,从而有
d(x)≤n-| N+Cm(xj+1) ÈNG-Cm(xj+1) È{x}|,有d(x)+d(xj+1)≤n-1 ………(4)
显然,xh-1和x的公共邻点只能在圈Cm上,所以有
|N(xi+1)ÇN(x)|≤a-1. ………(5)
定理的证明:若G不是哈密尔顿图,记Cm:x1x2…xmx1为G的一个最长圈,H为G-Cm的一分支,xÎV(H),xiÎNCm(x),因G是k连通的,所以有|NCm(H)|≥k,记S’为N+Cm(H)中含xi+1的k个点,和记S=S’È{x}。显然S是EIS
(i)若存在u,vÎS,使d(u)+d(v)≥n或|N(u)ÇN(v)|≥a。
显然a≥k+1,此时由断言的(3)和(4)知道不可能有d(u)+d(v)≥n 。因此,此时只有|N(u)ÇN(v)|≥a这种可能,再由断言的(5)知,只能存在xi+1,xj+1ÎN+Cm(H)使|N(xi+1)ÇN(xj+1)|≥a。
此时,因Cm是最长圈,显然, N(xi+1)ÇN(xj+1)没有点在G-Cm中(否则,若G-Cm的分支G1有点uÎN(xi+1)ÇN(xj+1),则记P为G1中一条两端点和xi,xj分别相邻的路,则有圈C*:xiPxjxj-1…xi+1uxj+1xj+2…xi比Cm长,矛盾,且C*含Cm的所有点),所以N(xi+1)ÇN(xj+1)中点全在Cm中,即|N(xi+1)ÇN(xj+1)|=|NCm(xi+1)ÇNCm(xj+1)|=|N-Cm(xi+1)ÇN-Cm(xj+1)|,又Cm是最长圈,所以N-Cm(xi+1)ÇN-Cm(xj+1)全部点和H中任取一点组成的点集中没有相邻的两点(比如,若xk-1、xh-1ÎN-Cm(xi+1)ÇN-Cm(xj+1), 使xk-1xh-1ÎE(G),(a):当xk-1Î{xi+2,xi+3,…,xj-1}, xh-1Î{xj+2,xi+3,…,xi-1}时,记P为H中一条两端点分别和xi和xj相邻的路,则有圈C*:xiPxj
xj-1…xkxj+1xj+2…xh-1xk-1xk-2…xi+1xhxh+1…xi比Cm长,矛盾,且C*含Cm的所有点;(b):当xk-1,xh-1Î{xj+2,xi+3,…,xi}时,不妨认为h≥k+1,则有圈C*:xiPxjxj-1…xi+1xkxk+1…xh-1xk-1xk-2…xj+1xhxh+1…xi比Cm长,矛盾,且C*含Cm的所有点),即这样的互不相邻点一共不少于α+1,和独立数是α矛盾。所以|N(u)ÇN(v)|≤α-1。
(ii)若对任意S中的任意两点u,v均有|N(u)ÈN(v)|≥n-△(S)。
当S中的最大度点是x。
则由断言的(2),有|N(xi+1)ÈN(xj+1)|≤n-d(x)-1,和上面定理条件|N(u)ÈN(v)|≥n-△(S)矛盾。
当S中的最大度点在N+Cm(H)中时。
我们分情况讨论如下:
情况1:| NCm(H)|≥3。
此时,记xi1,xi2,…,…xi(k-1),xikÎNCm(H)且要满足{xi1+1,xi1+2,…xi2-1,xi2+1,…xi(k-1)-1,
xi(k-1)+1,…xik-1}ÇNCm(H)=Ф,记x 为H中和{ xi1,xi2,…,…xi(k-1),xik}某点相邻的一点,记S={x,xi1+1,xi2+1,…xi(k-1)+1,xik+1},则S是EIS。不妨认为△(S)=d(xik+1)。
若xik-1xik+1ÏE(G),则由断言的(1),将有|N(xi(k-1)+1)ÈN(x)|≤n-(d(xik+1)-|{xik}|)-|{xi(k-1)+1,
x})≤n- d(xik+1)-1,矛盾。
若xik-1xik+1ÎE(G),记xik+t是和xik-1不相邻,而xik+1,xik+2…xik+t-2,xik+t-1是和xik-1均相邻的点(显然这样的点存在于{xik+1,xik+2,…xi(k+1)-1}中,如xi(k+1)-1就和xik-1不相邻)。其后,取S’={x,xi1+1,xi2+1,…xi(k-1)+1,xik+t},其中x和k-1个点中之一点相邻,则S’是EIS。(因为显然它是独立集。否则,将有更长圈。比如若xi(k-i)+1和xik+t相邻,其中1≤i≤k, 其后记P为H中一条两端点和xi(k-i), xik分别相邻的路,则有比Cm更长的圈xi(k-i)Pxikxik+1…xik+t-1xik-1xik-2 …xi(k+i)+1xik+txik+t+1…xi(k-i))。
当d(xik+t)≤max{d(xit+1):t=1,2,…(k-1)}时。不妨认为△(S’)=d(xih+1),显然xih+1和xik+2不相邻(否则有比Cm更长的圈xihPxikxik+1xik-1xik-2 …xih+1xik+2xik+3…xih),xi(h-1)+1,x均和xik+1不相邻(否则有比Cm更长的圈),所以断言的(1)不等式右边在可减去有,
|N(xi(h-1)+1)ÈN(x)|≤n-(d(xih+1)-|{xih-1,xih}|)-|{ xi(h-1)+1,x}|-|{xik+1}|≤n- d(xih+1)-1,矛盾。
当d(xik+t)>max{d(xit+1):t=1,2,…(k-1)}时。
显然{xi(k-1)+1,xi(k-1)+2,…xik-1}中点和x均不相邻,根据xik+t的选择,有{xik+1,xik+2,…xik+t}中点和xi(k-1)+1, x均不相邻(否则,如果 {xik+1,xik+2,…xik+t} 中有点和 xi(k-1)+1,则有更长圈)。因Cm为G的一个最长圈,所以,(I):当{xi(k-1)+2,xi(k-1)+3,…xik-2}中点xi(k-1)+r和xik+t相邻时,则xi(k-1)+r+1和xi(k-1)+1,x均不相邻;(II):当{xik+t,xik+t+1,…xi(k-1)}中点xik+r和xik+t相邻时,则xik+r-1和xi(k-1)+1,x均不相邻;(III):当{xik,xik+1,…xik+t-1}\{xik}中点xik+r和xik+t相邻时,则xik+r和xi(k-1)+1,x均不相邻。其后类似断言的(1)的分析,将有|N(xi(k-1)+1)ÈN(x)|≤n-(d(xik+t)-|{xik}|-|{xi(k-1)+1,x}|≤n- d(xik+t)-1,矛盾。
情况2:| NCm(H)|=|{xi,xj}|=2。
此时,认为d(xi+1)≤d(xj+1)。我们断言(a):H是完全子图。否则,取x,y为H中距离是2的两点。如果 max {d(x),d(y)}≥d(xj+1),由情况1,易有矛盾。如果max {d(x),d(y)}≤d(xj+1),有|N(x)ÈN(y)|≤n-(d(xi+1)-|{xi,xj}|)-|{xi+1,xj+1}|-|{x,y}|≤n-d(xj+1)-2,矛盾。
断言(b):H的每一点都和xi,xj均相邻。否则,若H中有x和xj不相邻,类似有|N(xi+1)ÈN(x)|≤n- (d(xj+1)-|{xj}|-|{xi+1,x}≤n- d(xj+1)-1,矛盾。两断言正确。
子情况2.1:|V(H)|≥2.
记xi,xjÎNCm(H), |V(H)|=h,(I):若有xkÎ{xj+1,xj+2,…xi}和xi+1相邻,也有xk+rÎ{xj+1,
xj+2,…xi}和xj+1相邻(r是自然数,且认为xk+1和xi+1不相邻),则显然{xk+1,xk+2,…xk+h}中点和xj+1均不相邻(否则,因H 是完全子图,将有更长的圈),
从而有|N(xi+1)ÈN(x)|≤n-(d(xj+1)-|{xj-1,xj}|-|{xi+1,x}|-(|{xk+1,xk+2,…xk+h}|-1)≤n-d(xj+1)-1,矛盾。同样若xhÎ{xi+1,xi+2,…xj-1}和xj+1相邻时,也有xh+r和xi+1相邻时,也有矛盾。
(II):没有情况(I)。即当xkÎ{xj+1,xj+2,…xi}和xj+1相邻,则{xj+1,xj+2,…xk-1}中点和xi+1均不相邻;同时当xhÎ{xi+1,xi+2,…xj-1}和xj+1相邻时,则{xh+1,xh+2,…xj}中点和xi+1均不相邻。此时,要满足定理条件,必有当xk∈{xj+1,xj+2,…xi} 和 xj+1相邻而{xk+1,xk+2,…xi}的每点和xj+1均不相邻时,则{xj+1,xj+2,…xk}的每点和xj+1均相邻,{xk,xk+1,…xi}的每点和xi+1也均相邻。类似地,当xt∈{xi+1,xi+2,…xj}和xi+1相邻而{xt+1,xt+2,…xj}中点和xi+1均不相邻时,则{xi+1,xi+2,…xt}的每点和xi+1均相邻,{xt,xt+1,…xj}的每点和xj+1也均相邻(否则,易有|N(xi+1)ÈN(x)|≤n-d(xj+1)-1, 矛盾)。也容易看出xk-1和xj不相邻(否则易有更长圈)。其后, 如果d(xi+1)≤d(xk-1)。则易计算|N(xi+1)ÈN(x)|≤n-(d(xk-1)-|{xk,xt}|)-|{xi+1,x,xj}|≤n-d(xk-1)-1,矛盾。如果d(xi+1)>d(xk-1)。也易计算|N(xk-1)ÈN(x)|≤n- (d(xi+1)-|{xk,xt}|)-|{xi-1,x,xj}|≤n-d(xi+1)-1,矛盾。
子情况2.2:|V(H)|=1.
记V(H)={x},| NCm(x)|=|{x1,xh}|
我们断言Cm=Cn-1。否则,因为没有子情况2.1和子情况
其后,不妨认为d(x2)≤d(xh+1)。取S={x,x2,xh+1}.
我们断言(1):x2和xh不相邻。否则,|N(x2)ÈN(x)|=d(x2),由定理条件|N(x2)ÈN(x)|≥n-△(S)=n-d(xh+1),得d(x2)≥n-d(xh+1),与断言的(3)矛盾。
我们断言(2)::xh-1和xh+1相邻。否则,由断言的(3)进一步有d(x2)≤n-(d(xh+1)-|{xh}|)-|{x2}|-|{xh}|-|V(H)|≤n-d(xh+1)-2,而由定理条件应有d(x2)=|N(x2)ÈN(x)|-1≥n-△(S)-1=n-d(xh+1)-1,矛盾。
我们再断言(3):x2和xn-1相邻。否则,当d(x2)=d(xh+1)时。类似上面断言(2)有x2和xn-1相邻,矛盾;若d(x2)<d(xh+1)时,若d(xn-1)≥d(xh-1),类似断言(2)有x2和xn-1相邻,矛盾。若d(xn-1)<d(xh-1),此时,max{d(x2),d(xn-1)}<(n-1)/2,取S={x,x2,xn-1},显然将不满足定理条件,矛盾。
其后,记xt是{xh+1,xh+2,…xn-1}中的和x2均相邻的下标最小的点。此时xt也和xh+1相邻(因为若xt和xh+1不相邻,由断言(1)将有|(x2)ÈN(x)|≤n-(d(xh+1)-|{xh-1,xh}|)-|{x2,x}|-|{xt-1}|=n-d(xh+1)-1,和应有定理条件|N(x2)ÈN(x)|≥n-△(S)=n-d(xh+1)矛盾)。因Cn-1是最长圈,所以,当xrÎ{x2,x3,…xh-1}和x2相邻时,则xr-1和xt-1不相邻;当xrÎ{xt,xt+1,…xn-1}\{xn-1}和x2相邻时,则xr+1和xt-1不相邻;显然x2和xh,xh+1均不相邻,而xt-1和xh-1,xh均不相邻,从而易有d(xt-1)≤n-(d(x2)-|{xn-1}|)-|{xh-1,xh,xt-1}|=n-d(x2)-2。类似地记xk是{x2,x3,…xh-1}中的和xh+1相邻的下标最小的点,则类似有d(xk-1)≤n-d(xh+1)-2。
从而有d(xt-1)+d(xk-1)≤[n-d(x2)-2]+[n-d(xh+1)-2]=n-3。 (*)
认为d(x2)≥d(xh+1)。由定理条件有d(xh+1)+1=|N(xh+1)ÈN(x)|≥n-d(x2),有d(x2)+d(xh+1)≥n-1;由断言的(3)有d(x2)+d(xh+1)≤n-1,所以推出d(x2)+d(xh+1)=n-1。同理:d(xn-1)+d(xh-1)=n-1。
认为d(xn-1)≤d(xh-1)。
(1)断言:若x k-1和xh 相邻,则d(xk-1)≥d(xh-1)。否则,若d(xk-1)<d(xh-1)。从而定理条件,有d(x n-1)+1=|N(x n-1)ÈN(x)|≥n-△{x, xn-1,xk-1}
若d(xk-1)≥d(xn-1)。则上面不等式d(x n-1)+1=|N(x n-1)ÈN(x)|≥n-△{x, xn-1,xk-1}= n- xk-1)> n- d(xh-1)。与d(xn-1)+d(xh-1)=n-1,矛盾。
若d(xk-1)<d(xn-1)。则从而定理条件,有d(xh-1)+1>d(x k-1)+1=|N(x k-1)ÈN(x)|≥n-△{x, xn-1,xk-1}= n- d(xn-1)。与d(xn-1)+d(xh-1)=n-1,矛盾。
所以断言d(xk-1)≥d(xh-1)正确。
(2)类似有,若x k-1和xh 不相邻,则d(xk-1)≥d(xh-1)-1。
(3)同样有若x t-1和x n相邻,则d(x t-1)≥d(x n -1)。否则,若d(x t-1)<d(x n -1), 则d(xn -1)+1> d(x t-1)+1=|N(x t-1)ÈN(x)|≥n-△{x, x t-1,x h-1}= n- d(x h-1)。与d(xn-1)+d(xh-1)=n-1,矛盾。
(4)类似有,若x t-1和x n 不相邻,则d(x t-1)≥d(x n -1)-1。若x k-1和xh 相邻,或x t-1和x n 相邻。则d(xk-1) +d(x t-1)≥d(x n -1)+d(xh-1)-1= n-2。与(*)矛盾。
所以,只能是:x k-1和xh 不相邻,及x t-1和x n 不相邻。得则d(xk-1) +d(x t-1)≥d(x n -1)+d(xh-1)-2= n-3。结合(*),得d(xk-1 )+d(x t-1)= n-3。
因x k-1和xh 不相邻,及x t-1和x n 不相邻,所以,x k-1和 x t-1的必有公共邻点,显然xk-1和xt-1不相邻(否则有比Cn-1长的圈),其后取S={x,xt-1,xk-1},认为d(xt-1)≥d(xk-1)
则从而定理条件,有 d(xk-1)+2=|N(x k-1)ÈN(x)| ≥n-△{x, x t-1,xk-1}= n- d(x t-1),有n-3=d(xk-1)+ d(x t-1)≥n-2。矛盾。
至此,完成定理的证明。
参考文献
1、RJ Gould, Updating the Hamiltonian problem---a survey. J. Graph Theory 15 (1991), no. 2, 121—157
2、GA Dirac, Some
theorems on abstract graphs, Proc.
3、O Ore., Note on Hamiltonian circuits, Amer.Math.Monthly, 67 (1960), 55.
4、J A Bondy, V Chvátal, A method in graph theory. Discrete Math. 15 (1976), no. 2, 111--135.
5、V Chvátal, P Erdös, A note on Hamiltonian circuits. Discrete Math. 2 (1972), 111--113.
6、RJ Faudree, RJ Gould; MS Jacobson and RH Schelp, Neighborhood unions and Hamiltonian properties in graphs. J. Combin. Theory Ser. B 47 (1989), no. 1, 1--9.
7、RJ Faudree, RJ Gould; MS
Jacobson,
RH Schelp and
L Lesniak, Neighborhood unions and highly
8、G.H. Fan, New sufficient conditions for cycles in graphs, J.Combin.Theory Ser.B , 37 (1984), 221-227
9、Song Zengmin, Zhang Kemin, Neighborhood unions and Hamiltonian properties[J], Discrete Math., 133(1994) 319-324.
10、RJ Gould,Advances on the Hamiltonian problem—A survey[J], Graph and Combin. 19(2003)7-52. 121--157.
11、JA Bondy and USR
Murty.,Graph theory with applications. Macmillan London ,New York,1976.是