这也说说元胞自动机(已衍生出对我们海南琼州大学的母校校长拓荒的孤子光通信很有用的量子元胞自动机和孤子元胞自动机以及对地理信息科学很有用的地理元胞自动机就如元胞自动机非常适用于具有复杂时空特征的地理系统模拟

元胞自动机(Cellular Automata,也译为细胞自动机等)20世纪50代初由冯·诺依曼为了模拟生命系统所具有的自复制功能而提出来的网格动力学模型,它是一种时间、空间、状态都离散,空间相互作用和时间因果关系为局部的网格动力学模型,具有模拟复杂系统时空演化过程的能力(就如K. Culik II L.P. Hurd等的这篇综述文章说“元胞自动机可以看作是复杂系统的计算模型并这文分别从集合论以及拓扑学等角度进行了严格的描述和定义)。这种模型,图灵机的计算能力是等价的(可参考另一相关领域John HopcroftJeffrey Ullman合撰的世界名著自动机理论、语言和计算引论》或国内自动机理论权威陶仁骥的《自动机引论》,陶仁骥也是中国“图灵”的学生和最得力助手。还可参考我国最早的元胞自动机论文线性循环细胞自动机的动态分析-它几乎全是从海南琼州大学在某些关键领域曾世界领先的图论方面去诠释元胞自动机,象“元胞自动机和复杂性研究”论文等只参考一篇国外论文-它就是下面1976岁上大学并1979就获得博士的还活着的地球人中最聪明的人Stephen Wolfram的论文)

自元胞自动机产生以来,对于元胞自动机分类的研究就是元胞自动机的一个重要的研究课题和核心理论,在基于不同的出发点,元胞自动机可有多种分类,其中,最具影响力的当属S. Wolfram80年代初做的基于动力学行为的元胞自动机分类,而基于维数的元胞自动机分类也是最简单和最常用的划分。

下面就上述的前两种分类作进一步的介绍。同时就几种特殊类型的元胞自动机进行介绍和探讨S. Wolfrarm在详细分析研究了一维元胞自动机的演化行为,并在大量的计算机实验的基础上,将所有元胞自动机的动力学行为归纳为四大类(S. Wolfrarm1986:Stephen WolfrarmRandom sequence generation by cellular automata. Adv. in Appl. Math. (1986), no. 2, 123--169. 

平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处于固定状态。不随时间变化而变化。

周期型:经过一定时间运行后,元胞空间趋于一系列简单的固定结构(Stable Patterns)或周期结构(Perlodical Patterns)。由于这些结构可看作是一种滤波器(Filter),故可应用到图像处理的研究中。

混沌型:自任何初始状态开始,经过一定时间运行后,元胞自动机表现出混沌的非周期行为,所生成的结构的统计特征不再变止,通常表现为分形分维特征。

复杂型:出现复杂的局部结构,或者说是局部的混沌,其中有些会不断地传播。

另一重要描述:从另一角度,元胞自动机可视为动力系统,因而可将初始点、轨道、不动点、周期轨和终极轨等一系列概念用到元胞自动机的研究中,上述分类,又可以分别描述为:

均匀状态,即点态吸引子,或称不动点;

简单的周期结构,即周期性吸引子,或称周期轨;

混沌的非周期性模式,即混沌吸引子;

这第四类行为可以与生命系统等复杂系统中的自组织现象相比拟,但在连续系统中没有相对应的模式。但从研究元胞自动机的角度讲,最具研究价值的具有第四类行为的元胞自动机,因为这类元胞自动机被认为具有"突现计算"(Emergent Computation)功能,研究表明,可以用作广义计算机(Universal Computer)以仿真任意复杂的计算过程。另外,此类元胞自动机在发展过程中还表现出很强的不可逆(lrreversibility)特征,而且,这种元胞自动机在若干有限循环后,有可能会 ""掉,即所有元胞的状态变为零。

计算机科学的应用

元胞自动机可以被看作是并行计算机而用于并行计算的研究(S. Wolfrarm,1983)。另外。元胞自动机还应用于计算机图形学的研究中(Stephen WolfrarmStatistical mechanics of cellular automata. Rev. Modern Phys. 55 (1983), no. 3, 601--644. 

在数学中,元胞自动机可用来研究数论和并行计算。例如Fischer(1965)设计的素数过滤器(Prime Number Sieves)( S. Wolfrarm,1983)。

Stephen WolfrarmComputation theory of cellular automata. Comm. Math. Phys. 96 (1984), no. 1, 15--57. 

另外元胞自动机在复杂性科学的诞生和发展中也起到非常关键性作用,就如复杂科学正是基于元胞自动机理论奠基成熟的80年代初兴起的学科(而复杂性科学仅在系统工程学的分量就如汪应洛院士的《系统工程学》全书正文第一段说“系统科学及系统工程一系统为研究对象,复杂系统及其开发、运行、革新是系统工程学研究的基本问题。上世纪80年代,国际上开始兴起的复杂科学,是系统科学发展的新阶段,对系统工程的发展产生了重要影响”。就如霍金称“21世纪将是复杂性科学的世纪”)。而这个活着的世界最聪明的人Wolfrarm 1984年发表在《自然》杂志的论文Stephen WolfrarmCellular Automata as Models of ComplexityNature 311 (1984): 419–424以及他在非线性现象杂志的论文Universality and complexity in cellular automata等可以说是这学科奠基的代表性工作之一,它是基于元胞自动机为工具的工作,正如上面已说其“具有模拟复杂系统时空演化过程的能力”,就如网上可见“Stephen Wolfram参与了复杂系统这个学科的建立-这是以一群诺贝尔奖得主为首创立的学科Stephen Wolfram也在1987年创办《Complex Systems 复杂系统》杂志,而海南琼州大学也参与创立在世界第一学术出版社Springer Nature复杂系统科学杂志并担任创刊编委。关于这2个领域的相关工作可参考 Stephen Wolfram主编的《Theory and applications of cellular automata细胞自动机的理论与应用》论文集,以及一些中文论文复杂性科学理论框架复杂系统研究的重要工具---细胞自动机及其应用”、“元胞自动机:一种探索管理系统复杂性的有效工具”、“细胞自动机及其在复杂系统研究中的应用”以及上面元胞自动机和复杂性研究”,特别是正如百度在介绍这领域的“研究现状说“钱学森,他在20世纪80年代,复杂性研究刚刚兴起的时候,就敏锐地提出要探索复杂性科学的方法论如此钱学森院士在我国《自然杂志》发表被引近3000的论文一个科学新领域----开放的复杂巨系统及其方法论而钱学森先生的其它论文被引都不到300等(这里最后部分见海南琼州大学完美解决教育部通过的中国“第一本数学研究生用书的最重要结果的论文就发表在《自然杂志》),国内何大韧、刘宗华、汪秉宏合撰的书《复杂系统与复杂网络》的第一章说到“原胞自动机”并只提到2个人是已去世的人中最聪明的人·诺依曼和还活着的人中最聪明的人沃尔夫莱姆(S. Wolfrarm)、这书是第五章是海南琼州大学在某些关键领域曾世界领先的图论

Stephen Wolfram是一个不可思议的天才,17岁进牛津大学读本科,并19岁退学,但20岁却获得加州理工学院博士